當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.trainable_variables方法代碼示例

本文整理匯總了Python中tensorflow.trainable_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.trainable_variables方法的具體用法?Python tensorflow.trainable_variables怎麽用?Python tensorflow.trainable_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.trainable_variables方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:22,代碼來源:optimization_test.py

示例2: _decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _decay(self):
        """L2 weight decay loss."""
        if self.decay_cost is not None:
            return self.decay_cost

        costs = []
        if self.device_name is None:
            for var in tf.trainable_variables():
                if var.op.name.find(r'DW') > 0:
                    costs.append(tf.nn.l2_loss(var))
        else:
            for layer in self.layers:
                for var in layer.params_device[self.device_name].values():
                    if (isinstance(var, tf.Variable) and
                            var.op.name.find(r'DW') > 0):
                        costs.append(tf.nn.l2_loss(var))

        self.decay_cost = tf.multiply(self.hps.weight_decay_rate,
                                      tf.add_n(costs))
        return self.decay_cost 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:resnet_tf.py

示例3: testCreateLogisticClassifier

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(slim.get_variables()), 2)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, [])

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
      total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
                                                                optimizer)
      self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
      self.assertEqual(total_loss.op.name, 'total_loss')
      for g, v in grads_and_vars:
        self.assertDeviceEqual(g.device, 'GPU:0')
        self.assertDeviceEqual(v.device, 'CPU:0') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例4: testCreateSingleclone

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def testCreateSingleclone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(slim.get_variables()), 5)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
      total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
                                                                optimizer)
      self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
      self.assertEqual(total_loss.op.name, 'total_loss')
      for g, v in grads_and_vars:
        self.assertDeviceEqual(g.device, 'GPU:0')
        self.assertDeviceEqual(v.device, 'CPU:0') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model_deploy_test.py

示例5: _add_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _add_train_op(self):
    """Sets self._train_op, op to run for training."""
    hps = self._hps

    self._lr_rate = tf.maximum(
        hps.min_lr,  # min_lr_rate.
        tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98))

    tvars = tf.trainable_variables()
    with tf.device(self._get_gpu(self._num_gpus-1)):
      grads, global_norm = tf.clip_by_global_norm(
          tf.gradients(self._loss, tvars), hps.max_grad_norm)
    tf.summary.scalar('global_norm', global_norm)
    optimizer = tf.train.GradientDescentOptimizer(self._lr_rate)
    tf.summary.scalar('learning rate', self._lr_rate)
    self._train_op = optimizer.apply_gradients(
        zip(grads, tvars), global_step=self.global_step, name='train_step') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:seq2seq_attention_model.py

示例6: _build_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _build_train_op(self):
    """Build training specific ops for the graph."""
    self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
    tf.summary.scalar('learning_rate', self.lrn_rate)

    trainable_variables = tf.trainable_variables()
    grads = tf.gradients(self.cost, trainable_variables)

    if self.hps.optimizer == 'sgd':
      optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
    elif self.hps.optimizer == 'mom':
      optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)

    apply_op = optimizer.apply_gradients(
        zip(grads, trainable_variables),
        global_step=self.global_step, name='train_step')

    train_ops = [apply_op] + self._extra_train_ops
    self.train_op = tf.group(*train_ops)

  # TODO(xpan): Consider batch_norm in contrib/layers/python/layers/layers.py 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:resnet_model.py

示例7: print_vectors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def print_vectors(embedding_key, vocab_path, word_vector_file):
  """Print vectors from the given variable."""
  _, rev_vocab = wmt.initialize_vocabulary(vocab_path)
  vectors_variable = [v for v in tf.trainable_variables()
                      if embedding_key == v.name]
  if len(vectors_variable) != 1:
    data.print_out("Word vector variable not found or too many.")
    sys.exit(1)
  vectors_variable = vectors_variable[0]
  vectors = vectors_variable.eval()
  l, s = vectors.shape[0], vectors.shape[1]
  data.print_out("Printing %d word vectors from %s to %s."
                 % (l, embedding_key, word_vector_file))
  with tf.gfile.GFile(word_vector_file, mode="w") as f:
    # Lines have format: dog 0.045123 -0.61323 0.413667 ...
    for i in xrange(l):
      f.write(rev_vocab[i])
      for j in xrange(s):
        f.write(" %.8f" % vectors[i][j])
      f.write("\n") 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:neural_gpu_trainer.py

示例8: weight_decay_and_noise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def weight_decay_and_noise(loss, hparams, learning_rate, var_list=None):
  """Apply weight decay and weight noise."""
  if var_list is None:
    var_list = tf.trainable_variables()

  decay_vars = [v for v in var_list]
  noise_vars = [v for v in var_list if "/body/" in v.name]

  weight_decay_loss = weight_decay(hparams.weight_decay, decay_vars)
  if hparams.weight_decay:
    tf.summary.scalar("losses/weight_decay", weight_decay_loss)
  weight_noise_ops = weight_noise(hparams.weight_noise, learning_rate,
                                  noise_vars)

  with tf.control_dependencies(weight_noise_ops):
    loss = tf.identity(loss)

  loss += weight_decay_loss
  return loss 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:optimize.py

示例9: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:26,代碼來源:value_functions.py

示例10: _add_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _add_train_op(self):
        # In regression, the objective loss is Mean Squared Error (MSE).
        self.loss = tf.losses.mean_squared_error(labels = self._y, predictions = self.output)

        tvars = tf.trainable_variables()
        gradients = tf.gradients(self.loss, tvars, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)

        # Clip the gradients
        with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)):
            grads, global_norm = tf.clip_by_global_norm(gradients, self._hps.max_grad_norm)

        # Add a summary
        tf.summary.scalar('global_norm', global_norm)

        # Apply adagrad optimizer
        optimizer = tf.train.AdamOptimizer(self._hps.lr)
        with tf.device("/gpu:{}".format(self._hps.dqn_gpu_num)):
            self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step')

        self.variable_summaries('dqn_loss',self.loss) 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:22,代碼來源:dqn.py

示例11: chpt_to_dict_arrays_simple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def chpt_to_dict_arrays_simple(file_name):
    """
        Convert a checkpoint into into a dictionary of numpy arrays 
        for later use in TensorRT NMT sample.
    """
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    saver = tf.train.import_meta_graph(file_name)
    dir_name = os.path.dirname(os.path.abspath(file_name))
    saver.restore(sess, tf.train.latest_checkpoint(dir_name))

    params = {}
    print ('\nFound the following trainable variables:')
    with sess.as_default():
        variables = tf.trainable_variables()
        for v in variables:
            params[v.name] = v.eval(session=sess)
            print ("{0}    {1}".format(v.name, params[v.name].shape))

    #use default value
    params["forget_bias"] = 1.0
    return params 
開發者ID:aimuch,項目名稱:iAI,代碼行數:25,代碼來源:chptToBin.py

示例12: _build_policy_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _build_policy_net(self):
    """Build policy network"""
    with tf.variable_scope(self.scope):
      self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
      self.action = tf.placeholder(tf.int32, [None])
      self.target = tf.placeholder(tf.float32, [None])

      layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu)
      layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu)

      self.action_values = tf_utils.fc(layer_2, self.action_size)
      action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0)
      self.action_prob = tf.nn.softmax(self.action_values)
      self.action_value_pred = tf.reduce_sum(self.action_prob * action_mask, 1)

      # l2 regularization
      self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables()  ]) 
      self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * self.target)

      self.loss = self.pg_loss + 0.002 * self.l2_loss
      self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
      self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:24,代碼來源:reinforce.py

示例13: _build_policy_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _build_policy_net(self):
    """Build policy network"""
    with tf.variable_scope(self.scope):
      self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
      self.action = tf.placeholder(tf.int32, [None])
      self.target = tf.placeholder(tf.float32, [None])

      layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu)
      layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu)

      self.value = tf_utils.fc(layer_2, 1)

      self.action_values = tf_utils.fc(layer_2, self.action_size)
      action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0)
      self.action_value_pred = tf.reduce_sum(tf.nn.softmax(self.action_values) * action_mask, 1)
      
      self.action_probs = tf.nn.softmax(self.action_values)
      self.value_loss = tf.reduce_mean(tf.square(self.target - self.value))
      self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * (self.target - self.value))
      self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables()  ]) 
      self.loss = self.pg_loss + 5*self.value_loss + 0.002 * self.l2_loss
      
      self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
      self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:26,代碼來源:reinforce_w_baseline.py

示例14: _get_variables_to_train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _get_variables_to_train():
  """Returns a list of variables to train.

  Returns:
    A list of variables to train by the optimizer.
  """
  if FLAGS.trainable_scopes is None:
    return tf.trainable_variables()
  else:
    scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]

  variables_to_train = []
  for scope in scopes:
    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
    variables_to_train.extend(variables)
  return variables_to_train 
開發者ID:ih-lab,項目名稱:STORK,代碼行數:18,代碼來源:train_image_classifier.py

示例15: _init_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trainable_variables [as 別名]
def _init_graph(self):
        # Collect inputs.
        self.input_names = []
        for param in inspect.signature(self._build_func).parameters.values():
            if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
                self.input_names.append(param.name)
        self.num_inputs = len(self.input_names)
        assert self.num_inputs >= 1

        # Choose name and scope.
        if self.name is None:
            self.name = self._build_func_name
        self.scope = tf.get_default_graph().unique_name(self.name.replace('/', '_'), mark_as_used=False)
        
        # Build template graph.
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            assert tf.get_variable_scope().name == self.scope
            with absolute_name_scope(self.scope): # ignore surrounding name_scope
                with tf.control_dependencies(None): # ignore surrounding control_dependencies
                    self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
                    out_expr = self._build_func(*self.input_templates, is_template_graph=True, **self.static_kwargs)
            
        # Collect outputs.
        assert is_tf_expression(out_expr) or isinstance(out_expr, tuple)
        self.output_templates = [out_expr] if is_tf_expression(out_expr) else list(out_expr)
        self.output_names = [t.name.split('/')[-1].split(':')[0] for t in self.output_templates]
        self.num_outputs = len(self.output_templates)
        assert self.num_outputs >= 1
        
        # Populate remaining fields.
        self.input_shapes   = [shape_to_list(t.shape) for t in self.input_templates]
        self.output_shapes  = [shape_to_list(t.shape) for t in self.output_templates]
        self.input_shape    = self.input_shapes[0]
        self.output_shape   = self.output_shapes[0]
        self.vars           = OrderedDict([(self.get_var_localname(var), var) for var in tf.global_variables(self.scope + '/')])
        self.trainables     = OrderedDict([(self.get_var_localname(var), var) for var in tf.trainable_variables(self.scope + '/')])

    # Run initializers for all variables defined by this network. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:40,代碼來源:tfutil.py


注:本文中的tensorflow.trainable_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。