當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.trace方法代碼示例

本文整理匯總了Python中tensorflow.trace方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.trace方法的具體用法?Python tensorflow.trace怎麽用?Python tensorflow.trace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.trace方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_value_updater

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def get_value_updater(self, data, new_mean, gamma_weighted, gamma_sum):
        tf_new_differences = tf.subtract(data, tf.expand_dims(new_mean, 0))
        tf_sq_dist_matrix = tf.matmul(tf.expand_dims(tf_new_differences, 2), tf.expand_dims(tf_new_differences, 1))
        tf_new_covariance = tf.reduce_sum(tf_sq_dist_matrix * tf.expand_dims(tf.expand_dims(gamma_weighted, 1), 2), 0)

        if self.has_prior:
            tf_new_covariance = self.get_prior_adjustment(tf_new_covariance, gamma_sum)

        tf_s, tf_u, _ = tf.svd(tf_new_covariance)

        tf_required_eigvals = tf_s[:self.rank]
        tf_required_eigvecs = tf_u[:, :self.rank]

        tf_new_baseline = (tf.trace(tf_new_covariance) - tf.reduce_sum(tf_required_eigvals)) / self.tf_rest
        tf_new_eigvals = tf_required_eigvals - tf_new_baseline
        tf_new_eigvecs = tf.transpose(tf_required_eigvecs)

        return tf.group(
            self.tf_baseline.assign(tf_new_baseline),
            self.tf_eigvals.assign(tf_new_eigvals),
            self.tf_eigvecs.assign(tf_new_eigvecs)
        ) 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:24,代碼來源:sparse_covariance.py

示例2: _mmd2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
    m = tf.cast(K_XX.get_shape()[0], tf.float32)
    n = tf.cast(K_YY.get_shape()[0], tf.float32)

    if biased:
        mmd2 = (tf.reduce_sum(K_XX) / (m * m)
              + tf.reduce_sum(K_YY) / (n * n)
              - 2 * tf.reduce_sum(K_XY) / (m * n))
    else:
        if const_diagonal is not False:
            trace_X = m * const_diagonal
            trace_Y = n * const_diagonal
        else:
            trace_X = tf.trace(K_XX)
            trace_Y = tf.trace(K_YY)

        mmd2 = ((tf.reduce_sum(K_XX) - trace_X) / (m * (m - 1))
              + (tf.reduce_sum(K_YY) - trace_Y) / (n * (n - 1))
              - 2 * tf.reduce_sum(K_XY) / (m * n))

    return mmd2 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:23,代碼來源:mmd.py

示例3: general_orthog_correction

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def general_orthog_correction(mean, std, k, scale_svs=None):    
    
    std = tf.clip_by_value(std, 1e-2, np.inf)
    
    if len(std.get_shape()) > 1:
        # largest singular value of the covariance matrix for each row
        iso_std = tf.expand_dims(tf.reduce_max(std, axis=1), axis=1)
    else:
        iso_std = std

    r = mean/iso_std        
    A = .5 * tf.matmul(tf.transpose(r), r)

    tr = tf.trace(A)
    svs = tf.sqrt(util.differentiable_sq_singular_vals(A))
    if scale_svs is not None:
        svs *= scale_svs
        tr *= scale_svs
        
    lb = lpbessel_svs(svs, k)
    
    return tr - lb 
開發者ID:davmre,項目名稱:elbow,代碼行數:24,代碼來源:symmetry_qs.py

示例4: _mmd2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
    m = tf.cast(tf.shape(K_XX)[0], tf.float32)
    n = tf.cast(tf.shape(K_YY)[0], tf.float32)

    
    if biased:
        mmd2 = (tf.reduce_sum(K_XX, keep_dims=True) / (m * m)
              + tf.reduce_sum(K_YY, keep_dims=True) / (n * n)
              - 2 * tf.reduce_sum(K_XY, keep_dims=True) / (m * n))
    else:
        if const_diagonal is not False:
            trace_X = m * const_diagonal
            trace_Y = n * const_diagonal
        else:
            trace_X = tf.trace(K_XX)
            trace_Y = tf.trace(K_YY)

        mmd2 = ((tf.reduce_sum(K_XX) - trace_X) / (m * (m - 1))
              + (tf.reduce_sum(K_YY) - trace_Y) / (n * (n - 1))
              - 2 * tf.reduce_sum(K_XY) / (m * n))

    return mmd2 
開發者ID:ruidan,項目名稱:DAS,代碼行數:24,代碼來源:my_layers.py

示例5: test_trace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def test_trace(self):
        t = tf.trace(self.random(3, 3))
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:5,代碼來源:ops.py

示例6: compare

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def compare(self, x):
    np_ans = np.trace(x, axis1=-2, axis2=-1)
    with self.test_session(use_gpu=True):
      tf_ans = tf.trace(x).eval()
    self.assertAllClose(tf_ans, np_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:trace_op_test.py

示例7: trace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def trace(self, a):
        return tf.trace(a) 
開發者ID:sharadmv,項目名稱:deepx,代碼行數:4,代碼來源:tensorflow.py

示例8: block_trace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def block_trace(self, X, m, n):
        blocks = []
        for i in range(n):
            blocks.append([])
            for j in range(n):
                block = self.trace(X[..., i*m:(i+1)*m, j*m:(j+1)*m])
                blocks[-1].append(block)
        return self.pack([
            self.pack([
                b for b in block
            ])
            for block in blocks
        ]) 
開發者ID:sharadmv,項目名稱:deepx,代碼行數:15,代碼來源:tensorflow.py

示例9: pose_smoothness

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def pose_smoothness(poses, global_only=False):
    """
    # Poses is F x 24 x 3 x 3
    Computes \sum ||p_i - p_{i+1}||
    On the pose in Rotation matrices space.
    It compues the angle between the two rotations:
    (tr(R) - 1) / 2 = cos(theta)
    So penalize acos((tr(R) - 1) / 2) --> this nans
    So:
    minimize: (1 - tr(R_1*R_2')) / 2 = -cos(theta) of R_1*R_2'
    min at -1.
    """
    # These are F-1 x 24 x 3 x 3 (Ok this is exactly the same..)
    curr_pose = poses[:-1]
    next_pose = poses[1:]
    RRt = tf.matmul(curr_pose, next_pose, transpose_b=True)

    # For min (1-tr(RR_T)) / 2
    costheta = (tf.trace(RRt) - 1) / 2.
    target = tf.ones_like(costheta)
    if global_only:
        print('Pose smoothness increased on global!')
        weights_global = 10 * tf.expand_dims(tf.ones_like(costheta[:, 0]), 1)
        weights_joints = tf.ones_like(costheta[:, 1:])
        weights = tf.concat([weights_global, weights_joints], 1)
    else:
        weights = tf.ones_like(costheta)
    return tf.losses.mean_squared_error(target, costheta, weights=weights) 
開發者ID:akanazawa,項目名稱:motion_reconstruction,代碼行數:30,代碼來源:refiner.py

示例10: init_pose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def init_pose(pred_Rs, init_pose, weights=None):
    """
    Should stay close to initial weights
    pred_Rs is N x 24 x 3 x 3
    init_pose is 72D, need to conver to Rodrigues
    """
    init_Rs = batch_rodrigues(tf.reshape(init_pose, [-1, 3]))
    init_Rs = tf.reshape(init_Rs, [-1, 24, 3, 3])
    RRt = tf.matmul(init_Rs, pred_Rs, transpose_b=True)
    costheta = (tf.trace(RRt) - 1) / 2.
    target = tf.ones_like(costheta)
    if weights is None:
        weights = tf.ones_like(costheta)
    return tf.losses.mean_squared_error(target, costheta, weights=weights) 
開發者ID:akanazawa,項目名稱:motion_reconstruction,代碼行數:16,代碼來源:refiner.py

示例11: _logp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def _logp(self, result, mean, std, **kwargs):

        n, k = self.shape
        base_logp = tf.reduce_sum(util.dists.gaussian_log_density(result, mean=mean, stddev=std))
        cxu = tf.matmul(tf.transpose(result/std), mean/std)
        svs = tf.sqrt(util.differentiable_sq_singular_vals(cxu))    
        lb = lpbessel_svs(svs, k)
        lp = base_logp + lb - tf.trace(cxu)
        
        return lp 
開發者ID:davmre,項目名稱:elbow,代碼行數:12,代碼來源:symmetry_qs.py

示例12: HSIC

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def HSIC(self, c_v, c_w):
        N = tf.shape(c_v)[0]
        H = tf.ones((N, N)) * tf.cast((1/N), tf.float32) * (-1) + tf.eye(N)
        K_1 = tf.matmul(c_v, tf.transpose(c_v))
        K_2 = tf.matmul(c_w, tf.transpose(c_w))
        rst = tf.matmul(K_1, H)
        rst = tf.matmul(rst, K_2)
        rst = tf.matmul(rst, H)
        rst = tf.trace(rst)
        return rst 
開發者ID:huybery,項目名稱:MvDSCN,代碼行數:12,代碼來源:rgbd.py

示例13: compute_eigenvals

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def compute_eigenvals(A):
    A_11 = A[:, :, 0, 0]  # (N, P)
    A_12 = A[:, :, 0, 1]
    A_13 = A[:, :, 0, 2]
    A_22 = A[:, :, 1, 1]
    A_23 = A[:, :, 1, 2]
    A_33 = A[:, :, 2, 2]
    I = tf.eye(3)
    p1 = tf.square(A_12) + tf.square(A_13) + tf.square(A_23)  # (N, P)
    q = tf.trace(A) / 3  # (N, P)
    p2 = tf.square(A_11 - q) + tf.square(A_22 - q) + tf.square(A_33 - q) + 2 * p1  # (N, P)
    p = tf.sqrt(p2 / 6) + 1e-8  # (N, P)
    N = tf.shape(A)[0]
    q_4d = tf.reshape(q, (N, -1, 1, 1))  # (N, P, 1, 1)
    p_4d = tf.reshape(p, (N, -1, 1, 1))
    B = (1 / p_4d) * (A - q_4d * I)  # (N, P, 3, 3)
    r = tf.clip_by_value(compute_determinant(B) / 2, -1, 1)  # (N, P)
    phi = tf.acos(r) / 3  # (N, P)
    eig1 = q + 2 * p * tf.cos(phi)  # (N, P)
    eig3 = q + 2 * p * tf.cos(phi + (2 * math.pi / 3))
    eig2 = 3 * q - eig1 - eig3
    return tf.abs(tf.stack([eig1, eig2, eig3], axis=2))  # (N, P, 3)


# P shape is (N, P, 3), N shape is (N, P, K, 3)
# return shape is (N, P) 
開發者ID:hkust-vgd,項目名稱:scanobjectnn,代碼行數:28,代碼來源:pointfly.py

示例14: _compute_pi_tracenorm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def _compute_pi_tracenorm(left_cov, right_cov):
    left_norm = tf.trace(left_cov) * right_cov.shape.as_list()[0]
    right_norm = tf.trace(right_cov) * left_cov.shape.as_list()[0]
    return tf.sqrt(left_norm / right_norm) 
開發者ID:gd-zhang,項目名稱:noisy-K-FAC,代碼行數:6,代碼來源:weight_blocks.py

示例15: _objective

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import trace [as 別名]
def _objective(xx, obj):
  """Objective function as custom op so that we can overload gradients."""
  with tf.name_scope('objective'):
    chol = tf.cholesky(xx)
    choli = tf.linalg.inv(chol)

    rq = tf.matmul(choli, tf.matmul(obj, choli, transpose_b=True))
    eigval = tf.matrix_diag_part(rq)
    loss = tf.trace(rq)
    grad = functools.partial(_objective_grad, xx, obj)
  return (loss, eigval, chol), grad 
開發者ID:deepmind,項目名稱:spectral_inference_networks,代碼行數:13,代碼來源:spin.py


注:本文中的tensorflow.trace方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。