本文整理匯總了Python中tensorflow.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.tile方法的具體用法?Python tensorflow.tile怎麽用?Python tensorflow.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: minibatch_stddev_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def minibatch_stddev_layer(x, group_size=4):
with tf.variable_scope('MinibatchStddev'):
group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size.
s = x.shape # [NCHW] Input shape.
y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]]) # [GMCHW] Split minibatch into M groups of size G.
y = tf.cast(y, tf.float32) # [GMCHW] Cast to FP32.
y -= tf.reduce_mean(y, axis=0, keep_dims=True) # [GMCHW] Subtract mean over group.
y = tf.reduce_mean(tf.square(y), axis=0) # [MCHW] Calc variance over group.
y = tf.sqrt(y + 1e-8) # [MCHW] Calc stddev over group.
y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True) # [M111] Take average over fmaps and pixels.
y = tf.cast(y, x.dtype) # [M111] Cast back to original data type.
y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [N1HW] Replicate over group and pixels.
return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap.
#----------------------------------------------------------------------------
# Generator network used in the paper.
示例2: pad_and_reshape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def pad_and_reshape(instr_spec, frame_length, F):
"""
:param instr_spec:
:param frame_length:
:param F:
:returns:
"""
spec_shape = tf.shape(instr_spec)
extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
n_extra_row = (frame_length) // 2 + 1 - F
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
extended_spec = tf.concat([instr_spec, extension], axis=2)
old_shape = tf.shape(extended_spec)
new_shape = tf.concat([
[old_shape[0] * old_shape[1]],
old_shape[2:]],
axis=0)
processed_instr_spec = tf.reshape(extended_spec, new_shape)
return processed_instr_spec
示例3: encode_coordinates_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def encode_coordinates_fn(self, net):
"""Adds one-hot encoding of coordinates to different views in the networks.
For each "pixel" of a feature map it adds a onehot encoded x and y
coordinates.
Args:
net: a tensor of shape=[batch_size, height, width, num_features]
Returns:
a tensor with the same height and width, but altered feature_size.
"""
mparams = self._mparams['encode_coordinates_fn']
if mparams.enabled:
batch_size, h, w, _ = net.shape.as_list()
x, y = tf.meshgrid(tf.range(w), tf.range(h))
w_loc = slim.one_hot_encoding(x, num_classes=w)
h_loc = slim.one_hot_encoding(y, num_classes=h)
loc = tf.concat([h_loc, w_loc], 2)
loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
return tf.concat([net, loc], 3)
else:
return net
示例4: compute_column_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def compute_column_softmax(self, column_controller_vector, time_step):
#compute softmax over all the columns using column controller vector
column_controller_vector = tf.tile(
tf.expand_dims(column_controller_vector, 1),
[1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d
column_controller_vector = nn_utils.apply_dropout(
column_controller_vector, self.utility.FLAGS.dropout, self.mode)
self.full_column_hidden_vectors = tf.concat(
axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors])
self.full_column_hidden_vectors += self.summary_text_entry_embeddings
self.full_column_hidden_vectors = nn_utils.apply_dropout(
self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode)
column_logits = tf.reduce_sum(
column_controller_vector * self.full_column_hidden_vectors, 2) + (
self.params["word_match_feature_column_name"] *
self.batch_column_exact_match) + self.full_column_mask
column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols
return column_softmax
示例5: _create_initial_states
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def _create_initial_states(self, stride):
"""Returns stacked and batched initial states for the bi-LSTM."""
initial_states_forward = []
initial_states_backward = []
for index in range(len(self._hidden_layer_sizes)):
# Retrieve the initial states for this layer.
states_sxd = []
for direction in ['forward', 'backward']:
for substate in ['c', 'h']:
state_1xd = self._component.get_variable('initial_state_%s_%s_%d' %
(direction, substate, index))
state_sxd = tf.tile(state_1xd, [stride, 1]) # tile across the batch
states_sxd.append(state_sxd)
# Assemble and append forward and backward LSTM states.
initial_states_forward.append(
tf.contrib.rnn.LSTMStateTuple(states_sxd[0], states_sxd[1]))
initial_states_backward.append(
tf.contrib.rnn.LSTMStateTuple(states_sxd[2], states_sxd[3]))
return initial_states_forward, initial_states_backward
示例6: _batch_decode_refined_boxes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def _batch_decode_refined_boxes(self, refined_box_encodings, proposal_boxes):
"""Decode tensor of refined box encodings.
Args:
refined_box_encodings: a 3-D tensor with shape
[batch_size, max_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings.
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes.
Returns:
refined_box_predictions: a [batch_size, max_num_proposals, num_classes, 4]
float tensor representing (padded) refined bounding box predictions
(for each image in batch, proposal and class).
"""
tiled_proposal_boxes = tf.tile(
tf.expand_dims(proposal_boxes, 2), [1, 1, self.num_classes, 1])
tiled_proposals_boxlist = box_list.BoxList(
tf.reshape(tiled_proposal_boxes, [-1, 4]))
decoded_boxes = self._box_coder.decode(
tf.reshape(refined_box_encodings, [-1, self._box_coder.code_size]),
tiled_proposals_boxlist)
return tf.reshape(decoded_boxes.get(),
[-1, self.max_num_proposals, self.num_classes, 4])
示例7: _padded_batched_proposals_indicator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def _padded_batched_proposals_indicator(self,
num_proposals,
max_num_proposals):
"""Creates indicator matrix of non-pad elements of padded batch proposals.
Args:
num_proposals: Tensor of type tf.int32 with shape [batch_size].
max_num_proposals: Maximum number of proposals per image (integer).
Returns:
A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
"""
batch_size = tf.size(num_proposals)
tiled_num_proposals = tf.tile(
tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
tiled_proposal_index = tf.tile(
tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
return tf.greater(tiled_num_proposals, tiled_proposal_index)
示例8: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def __call__(self, observation, state):
with tf.variable_scope('policy'):
x = tf.contrib.layers.flatten(observation)
mean = tf.contrib.layers.fully_connected(
x,
self._action_size,
tf.tanh,
weights_initializer=self._mean_weights_initializer)
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32,
self._logstd_initializer)
logstd = tf.tile(logstd[None, ...],
[tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
with tf.variable_scope('value'):
x = tf.contrib.layers.flatten(observation)
for size in self._value_layers:
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
value = tf.contrib.layers.fully_connected(x, 1, None)[:, 0]
return (mean, logstd, value), state
示例9: project_hidden
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def project_hidden(x, projection_tensors, hidden_size, num_blocks):
"""Project encoder hidden state into block_dim using projection tensors.
Args:
x: Encoder hidden state of shape [-1, hidden_size].
projection_tensors: Projection tensors used to project the hidden state.
hidden_size: Dimension of the latent space.
num_blocks: Number of blocks in DVQ.
Returns:
Projected states of shape [-1, num_blocks, block_dim].
"""
x = tf.reshape(x, shape=[1, -1, hidden_size])
x_tiled = tf.reshape(
tf.tile(x, multiples=[num_blocks, 1, 1]),
shape=[num_blocks, -1, hidden_size])
x_projected = tf.matmul(x_tiled, projection_tensors)
x_projected = tf.transpose(x_projected, perm=[1, 0, 2])
return x_projected
示例10: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def __init__(self, num_keypoints, scale_factors=None):
"""Constructor for KeypointBoxCoder.
Args:
num_keypoints: Number of keypoints to encode/decode.
scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
In addition to scaling ty and tx, the first 2 scalars are used to scale
the y and x coordinates of the keypoints as well. If set to None, does
not perform scaling.
"""
self._num_keypoints = num_keypoints
if scale_factors:
assert len(scale_factors) == 4
for scalar in scale_factors:
assert scalar > 0
self._scale_factors = scale_factors
self._keypoint_scale_factors = None
if scale_factors is not None:
self._keypoint_scale_factors = tf.expand_dims(tf.tile(
[tf.to_float(scale_factors[0]), tf.to_float(scale_factors[1])],
[num_keypoints]), 1)
示例11: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def call(self, seq_value_len_list, mask=None, **kwargs):
if self.supports_masking:
if mask is None:
raise ValueError(
"When supports_masking=True,input must support masking")
uiseq_embed_list = seq_value_len_list
mask = tf.to_float(mask)
user_behavior_length = tf.reduce_sum(mask, axis=-1, keep_dims=True)
mask = tf.expand_dims(mask, axis=2)
else:
uiseq_embed_list, user_behavior_length = seq_value_len_list
mask = tf.sequence_mask(user_behavior_length,
self.seq_len_max, dtype=tf.float32)
mask = tf.transpose(mask, (0, 2, 1))
embedding_size = uiseq_embed_list.shape[-1]
mask = tf.tile(mask, [1, 1, embedding_size])
uiseq_embed_list *= mask
hist = uiseq_embed_list
if self.mode == "max":
return tf.reduce_max(hist, 1, keep_dims=True)
hist = tf.reduce_sum(hist, 1, keep_dims=False)
if self.mode == "mean":
hist = tf.div(hist, user_behavior_length+self.eps)
hist = tf.expand_dims(hist, axis=1)
return hist
示例12: tf_repeat
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def tf_repeat(output, idx, dim1, dim2, bias):
# tensor equivalent of np.repeat
# 1d to 3d array tensor
if bias:
idx = tf.tile(idx, [1, dim1 * dim2])
idx = tf.reshape(idx, [-1, dim1, dim2])
return output * idx
else:
return output
示例13: tf_repeat
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def tf_repeat(output, idx, dim1, dim2):
# tensor equivalent of np.repeat
# 1d to 3d array tensor
idx = tf.tile(idx, [1, dim1 * dim2])
idx = tf.reshape(idx, [-1, dim1, dim2])
return output * idx
示例14: tf_repeat
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def tf_repeat(tensor, repeats):
expanded_tensor = tf.expand_dims(tensor, -1)
multiples = [1] + repeats
tiled_tensor = tf.tile(expanded_tensor, multiples = multiples)
repeated_tensor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
return repeated_tensor
#----------------------------------------------------------------------------
# Generator loss function used in the paper (WGAN + AC-GAN).
示例15: upscale2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tile [as 別名]
def upscale2d(x, factor=2):
assert isinstance(factor, int) and factor >= 1
if factor == 1: return x
with tf.variable_scope('Upscale2D'):
s = x.shape
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
#----------------------------------------------------------------------------
# Fused upscale2d + conv2d.
# Faster and uses less memory than performing the operations separately.