本文整理匯總了Python中tensorflow.tensordot方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.tensordot方法的具體用法?Python tensorflow.tensordot怎麽用?Python tensorflow.tensordot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.tensordot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def call(self, inputs, **kwargs):
query, keys = inputs
keys_len = keys.get_shape()[1]
queries = K.repeat_elements(query, keys_len, 1)
att_input = tf.concat(
[queries, keys, queries - keys, queries * keys], axis=-1)
att_out = MLP(self.hidden_size, self.activation, self.l2_reg,
self.keep_prob, self.use_bn, seed=self.seed)(att_input)
attention_score = tf.nn.bias_add(tf.tensordot(
att_out, self.kernel, axes=(-1, 0)), self.bias)
return attention_score
示例2: soft_embedding_lookup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def soft_embedding_lookup(embedding, soft_ids):
"""Transforms soft ids (e.g., probability distribution over ids) into
embeddings, by mixing the embedding vectors with the soft weights.
Args:
embedding: A Tensor of shape `[num_classes] + embedding-dim` containing
the embedding vectors. Embedding can have dimensionality > 1, i.e.,
:attr:`embedding` can be of shape
`[num_classes, emb_dim_1, emb_dim_2, ...]`
soft_ids: A Tensor of weights (probabilities) used to mix the
embedding vectors.
Returns:
A Tensor of shape `shape(soft_ids)[:-1] + shape(embedding)[1:]`. For
example, if `shape(soft_ids) = [batch_size, max_time, vocab_size]`
and `shape(embedding) = [vocab_size, emb_dim]`, then the return tensor
has shape `[batch_size, max_time, emb_dim]`.
Example::
decoder_outputs, ... = decoder(...)
soft_seq_emb = soft_embedding_lookup(
embedding, tf.nn.softmax(decoder_outputs.logits))
"""
return tf.tensordot(tf.to_float(soft_ids), embedding, [-1, 0])
示例3: create_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def create_tensor(self, in_layers=None, set_tensors=True, **kwargs):
act_fn = activations.get('sigmoid')
if in_layers is None:
in_layers = self.in_layers
in_layers = convert_to_layers(in_layers)
self._build()
A_tilda_k = in_layers[0].out_tensor
X = in_layers[1].out_tensor
if self.combine_method == "linear":
concatenated = tf.concat([A_tilda_k, X], axis=2)
adp_fn_val = act_fn(
tf.tensordot(concatenated, self.trainable_weights[0], axes=1))
else:
adp_fn_val = act_fn(tf.matmul(A_tilda_k, tf.tensordot(X, self.Q, axes=1)))
out_tensor = adp_fn_val
if set_tensors:
self.variables = self.trainable_weights
self.out_tensor = out_tensor
return out_tensor
示例4: bilinear_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def bilinear_attention(query, context,
query_mask, context_mask, dropout_ratio,
scope, reuse=None):
with tf.variable_scope(scope+"_Context_to_Query_Attention_Layer", reuse=reuse):
context_ = tf.transpose(context, [0,2,1])
hidden_dim = query.get_shape()[-1]
attn_W = tf.get_variable("AttnW", dtype=tf.float32,
shape=[hidden_dim, hidden_dim],
initializer=initializer)
weighted_query = tf.tensordot(query, attn_W, axes=[[2], [0]])
S = tf.matmul(weighted_query, context_) # batch x q_len x c_len
mask_q = tf.expand_dims(query_mask, 1)
mask_c = tf.expand_dims(context_mask, 1)
S_ = tf.nn.softmax(qanet_layers.mask_logits(S, mask = mask_c))
c2q = tf.matmul(S_, context)
S_T = tf.nn.softmax(qanet_layers.mask_logits(tf.transpose(S, [0,2,1]), mask = mask_q))
q2c = tf.matmul(S_T, query)
return c2q, q2c
示例5: quantizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def quantizer(w, config, reuse=False, temperature=1, L=5, scope='image'):
"""
Quantize feature map over L centers to obtain discrete $\hat{w}$
+ Centers: {-2,-1,0,1,2}
+ TODO: Toggle learnable centers?
"""
with tf.variable_scope('quantizer_{}'.format(scope, reuse=reuse)):
centers = tf.cast(tf.range(-2,3), tf.float32)
# Partition W into the Voronoi tesellation over the centers
w_stack = tf.stack([w for _ in range(L)], axis=-1)
w_hard = tf.cast(tf.argmin(tf.abs(w_stack - centers), axis=-1), tf.float32) + tf.reduce_min(centers)
smx = tf.nn.softmax(-1.0/temperature * tf.abs(w_stack - centers), dim=-1)
# Contract last dimension
w_soft = tf.einsum('ijklm,m->ijkl', smx, centers) # w_soft = tf.tensordot(smx, centers, axes=((-1),(0)))
# Treat quantization as differentiable for optimization
w_bar = tf.round(tf.stop_gradient(w_hard - w_soft) + w_soft)
return w_bar
示例6: attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def attention(inputs):
# Trainable parameters
hidden_size = inputs.shape[2].value
u_omega = tf.get_variable("u_omega", [hidden_size], initializer=tf.keras.initializers.glorot_normal())
with tf.name_scope('v'):
v = tf.tanh(inputs)
# For each of the timestamps its vector of size A from `v` is reduced with `u` vector
vu = tf.tensordot(v, u_omega, axes=1, name='vu') # (B,T) shape
alphas = tf.nn.softmax(vu, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
output = tf.reduce_sum(inputs * tf.expand_dims(alphas, -1), 1)
# Final output with tanh
output = tf.tanh(output)
return output, alphas
示例7: node_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def node_attention(inputs, adj, return_weights=False):
hidden_size = inputs.shape[-1].value
H_v = tf.Variable(tf.random_normal([hidden_size, 1], stddev=0.1))
# convert adj to sparse tensor
zero = tf.constant(0, dtype=tf.float32)
where = tf.not_equal(adj, zero)
indices = tf.where(where)
values = tf.gather_nd(adj, indices)
adj = tf.SparseTensor(indices=indices,
values=values,
dense_shape=adj.shape)
with tf.name_scope('v'):
v = adj * tf.squeeze(tf.tensordot(inputs, H_v, axes=1))
weights = tf.sparse_softmax(v, name='alphas') # [nodes,nodes]
output = tf.sparse_tensor_dense_matmul(weights, inputs)
if not return_weights:
return output
else:
return output, weights
# view-level attention (equation (4) in SemiGNN)
示例8: _call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def _call(self, _inp, output_size, is_training):
batch_size = tf.shape(_inp)[0]
H, W, B, A = tuple(int(i) for i in _inp.shape[1:])
if self.embedding is None:
self.embedding = tf.get_variable(
"embedding", shape=(int(A/2), self.n_objects), dtype=tf.float32)
inp = tf.reshape(_inp, (batch_size, H * W * B, A))
key, value = tf.split(inp, 2, axis=2)
raw_attention = tf.tensordot(key, self.embedding, [[2], [0]])
attention = tf.nn.softmax(raw_attention, axis=1)
attention_t = tf.transpose(attention, (0, 2, 1))
weighted_value = tf.matmul(attention_t, value)
flat_weighted_value = tf.reshape(
weighted_value, (batch_size, self.n_objects * int(A/2)))
if self.output_network is None:
self.output_network = cfg.build_math_output(scope="math_output")
return self.output_network(flat_weighted_value, output_size, is_training)
示例9: _create_corpus_embed
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def _create_corpus_embed(self):
"""
msg_embed: batch_size * max_n_days * max_n_msgs * msg_embed_size
=> corpus_embed: batch_size * max_n_days * corpus_embed_size
"""
with tf.name_scope('corpus_embed'):
with tf.variable_scope('u_t'):
proj_u = self._linear(self.msg_embed, self.msg_embed_size, 'tanh', use_bias=False)
w_u = tf.get_variable('w_u', shape=(self.msg_embed_size, 1), initializer=self.initializer)
u = tf.reduce_mean(tf.tensordot(proj_u, w_u, axes=1), axis=-1) # batch_size * max_n_days * max_n_msgs
mask_msgs = tf.sequence_mask(self.n_msgs_ph, maxlen=self.max_n_msgs, dtype=tf.bool, name='mask_msgs')
ninf = tf.fill(tf.shape(mask_msgs), np.NINF)
masked_score = tf.where(mask_msgs, u, ninf)
u = neural.softmax(masked_score) # batch_size * max_n_days * max_n_msgs
u = tf.where(tf.is_nan(u), tf.zeros_like(u), u) # replace nan with 0.0
u = tf.expand_dims(u, axis=-2) # batch_size * max_n_days * 1 * max_n_msgs
corpus_embed = tf.matmul(u, self.msg_embed) # batch_size * max_n_days * 1 * msg_embed_size
corpus_embed = tf.reduce_mean(corpus_embed, axis=-2) # batch_size * max_n_days * msg_embed_size
self.corpus_embed = tf.nn.dropout(corpus_embed, keep_prob=1-self.dropout_ce, name='corpus_embed')
示例10: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def call(self, inputs, **kwargs):
if K.ndim(inputs[0]) != 3:
raise ValueError(
"Unexpected inputs dimensions %d, expect to be 3 dimensions" % (K.ndim(inputs)))
embeds_vec_list = inputs
row = []
col = []
for r, c in itertools.combinations(embeds_vec_list, 2):
row.append(r)
col.append(c)
p = tf.concat(row, axis=1)
q = tf.concat(col, axis=1)
inner_product = p * q
bi_interaction = inner_product
attention_temp = tf.nn.relu(tf.nn.bias_add(tf.tensordot(
bi_interaction, self.attention_W, axes=(-1, 0)), self.attention_b))
# Dense(self.attention_factor,'relu',kernel_regularizer=l2(self.l2_reg_w))(bi_interaction)
self.normalized_att_score = tf.nn.softmax(tf.tensordot(
attention_temp, self.projection_h, axes=(-1, 0)), dim=1)
attention_output = tf.reduce_sum(
self.normalized_att_score*bi_interaction, axis=1)
attention_output = tf.nn.dropout(
attention_output, self.keep_prob, seed=1024)
# Dropout(1-self.keep_prob)(attention_output)
afm_out = tf.tensordot(
attention_output, self.projection_p, axes=(-1, 0))
return afm_out
示例11: cumsum
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def cumsum(x, axis=0, exclusive=False):
"""TPU hack for tf.cumsum.
This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless
the axis dimension is very large.
Args:
x: a Tensor
axis: an integer
exclusive: a boolean
Returns:
Tensor of the same shape as x.
"""
if not is_on_tpu():
return tf.cumsum(x, axis=axis, exclusive=exclusive)
x_shape = shape_list(x)
rank = len(x_shape)
length = x_shape[axis]
my_range = tf.range(length)
comparator = tf.less if exclusive else tf.less_equal
mask = tf.cast(
comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
x.dtype)
ret = tf.tensordot(x, mask, axes=[[axis], [0]])
if axis != rank - 1:
ret = tf.transpose(
ret,
list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
return ret
示例12: compute_attention_component
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def compute_attention_component(antecedent,
total_depth,
filter_width=1,
padding="VALID",
name="c",
vars_3d_num_heads=0):
"""Computes attention compoenent (query, key or value).
Args:
antecedent: a Tensor with shape [batch, length, channels]
total_depth: an integer
filter_width: An integer specifying how wide you want the attention
component to be.
padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding.
name: a string specifying scope name.
vars_3d_num_heads: an optional integer (if we want to use 3d variables)
Returns:
c : [batch, length, depth] tensor
"""
if vars_3d_num_heads > 0:
assert filter_width == 1
input_depth = antecedent.get_shape().as_list()[-1]
depth_per_head = total_depth // vars_3d_num_heads
initializer_stddev = input_depth ** -0.5
if "q" in name:
initializer_stddev *= depth_per_head ** -0.5
var = tf.get_variable(
name, [input_depth,
vars_3d_num_heads,
total_depth // vars_3d_num_heads],
initializer=tf.random_normal_initializer(stddev=initializer_stddev))
var = tf.cast(var, antecedent.dtype)
var = tf.reshape(var, [input_depth, total_depth])
return tf.tensordot(antecedent, var, axes=1)
if filter_width == 1:
return common_layers.dense(
antecedent, total_depth, use_bias=False, name=name)
else:
return common_layers.conv1d(
antecedent, total_depth, filter_width, padding, name=name)
示例13: rotate_point_cloud_by_angle_y_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def rotate_point_cloud_by_angle_y_tensor(data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
Nx3 array, original batch of point clouds
Return:
Nx3 array, rotated batch of point clouds
"""
cosval = tf.cos(rotation_angle)
sinval = tf.sin(rotation_angle)
rotation_matrix = tf.reshape([[cosval, 0, sinval],[0, 1, 0],[-sinval, 0, cosval]], [3,3])
data = tf.reshape(data, [-1, 3])
rotated_data = tf.transpose(tf.tensordot(rotation_matrix, tf.transpose(data), [1,0]))
return rotated_data
示例14: rotate_point_cloud_by_angle_x_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def rotate_point_cloud_by_angle_x_tensor(data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
Nx3 array, original batch of point clouds
Return:
Nx3 array, rotated batch of point clouds
"""
cosval = tf.cos(rotation_angle)
sinval = tf.sin(rotation_angle)
rotation_matrix = tf.reshape([[1, 0, 0],[0, cosval, -sinval],[0, sinval, cosval]], [3,3])
data = tf.reshape(data, [-1, 3])
rotated_data = tf.transpose(tf.tensordot(rotation_matrix, tf.transpose(data), [1,0]))
return rotated_data
示例15: rotate_point_cloud_by_angle_z_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tensordot [as 別名]
def rotate_point_cloud_by_angle_z_tensor(data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
Nx3 array, original batch of point clouds
Return:
Nx3 array, rotated batch of point clouds
"""
cosval = tf.cos(rotation_angle)
sinval = tf.sin(rotation_angle)
rotation_matrix = tf.reshape([[cosval, -sinval, 0],[sinval, cosval, 0],[0, 0, 1]], [3,3])
data = tf.reshape(data, [-1, 3])
rotated_data = tf.transpose(tf.tensordot(rotation_matrix, tf.transpose(data), [1,0]))
return rotated_data