本文整理匯總了Python中tensorflow.tables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.tables_initializer方法的具體用法?Python tensorflow.tables_initializer怎麽用?Python tensorflow.tables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.tables_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_create_summaries_is_runnable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_create_summaries_is_runnable(self):
ocr_model = self.create_model()
data = data_provider.InputEndpoints(
images=self.fake_images,
images_orig=self.fake_images,
labels=self.fake_labels,
labels_one_hot=slim.one_hot_encoding(self.fake_labels,
self.num_char_classes))
endpoints = ocr_model.create_base(
images=self.fake_images, labels_one_hot=None)
charset = create_fake_charset(self.num_char_classes)
summaries = ocr_model.create_summaries(
data, endpoints, charset, is_training=False)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
tf.tables_initializer().run()
sess.run(summaries) # just check it is runnable
示例2: execute_cpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
"""Constructs the graph, executes it on CPU and returns the result.
Args:
graph_fn: a callable that constructs the tensorflow graph to test. The
arguments of this function should correspond to `inputs`.
inputs: a list of numpy arrays to feed input to the computation graph.
Returns:
A list of numpy arrays or a scalar returned from executing the tensorflow
graph.
"""
with self.test_session(graph=tf.Graph()) as sess:
placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
results = graph_fn(*placeholders)
sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
tf.local_variables_initializer()])
materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
inputs)))
if (len(materialized_results) == 1
and (isinstance(materialized_results, list)
or isinstance(materialized_results, tuple))):
materialized_results = materialized_results[0]
return materialized_results
示例3: load_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def load_model(sess, ckpt):
with sess.as_default():
with sess.graph.as_default():
init_ops = [tf.global_variables_initializer(),
tf.local_variables_initializer(), tf.tables_initializer()]
sess.run(init_ops)
# load saved model
ckpt_path = tf.train.latest_checkpoint(ckpt)
if ckpt_path:
print("Loading saved model: " + ckpt_path)
else:
raise ValueError("No checkpoint found in {}".format(ckpt))
# reader = tf.train.NewCheckpointReader(ckpt+'model.ckpt_0.876-580500')
# variables = reader.get_variable_to_shape_map()
# for v in variables:
# print(v)
saver = tf.train.Saver()
saver.restore(sess, ckpt_path)
示例4: make_set_filter_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def make_set_filter_fn(elements):
"""Constructs a TensorFlow "set" data structure.
Note that sets returned by this function are uninitialized. Initialize them
by calling `sess.run(tf.tables_initializer())`
Args:
elements: A list of non-Tensor elements.
Returns:
A function that when called with a single tensor argument, returns
a boolean tensor if the argument is in the set.
"""
table = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(
elements, tf.tile([1], [len(elements)])
),
default_value=0,
)
return lambda x: tf.equal(table.lookup(tf.dtypes.cast(x, tf.int32)), 1)
示例5: execute_tpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_tpu(self, graph_fn, inputs):
"""Constructs the graph, executes it on TPU and returns the result.
Args:
graph_fn: a callable that constructs the tensorflow graph to test. The
arguments of this function should correspond to `inputs`.
inputs: a list of numpy arrays to feed input to the computation graph.
Returns:
A list of numpy arrays or a scalar returned from executing the tensorflow
graph.
"""
with self.test_session(graph=tf.Graph()) as sess:
placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
tpu_computation = tpu.rewrite(graph_fn, placeholders)
sess.run(tpu.initialize_system())
sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
tf.local_variables_initializer()])
materialized_results = sess.run(tpu_computation,
feed_dict=dict(zip(placeholders, inputs)))
sess.run(tpu.shutdown_system())
if len(materialized_results) == 1:
materialized_results = materialized_results[0]
return materialized_results
示例6: execute_cpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
"""Constructs the graph, executes it on CPU and returns the result.
Args:
graph_fn: a callable that constructs the tensorflow graph to test. The
arguments of this function should correspond to `inputs`.
inputs: a list of numpy arrays to feed input to the computation graph.
Returns:
A list of numpy arrays or a scalar returned from executing the tensorflow
graph.
"""
with self.test_session(graph=tf.Graph()) as sess:
placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
results = graph_fn(*placeholders)
sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
tf.local_variables_initializer()])
materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
inputs)))
if len(materialized_results) == 1:
materialized_results = materialized_results[0]
return materialized_results
示例7: testTrainInputFn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testTrainInputFn(self):
nmt_parser = argparse.ArgumentParser()
nmt.add_arguments(nmt_parser)
flags, _ = nmt_parser.parse_known_args()
update_flags(flags, "input_fn_test")
default_hparams = nmt.create_hparams(flags)
hparams = nmt.extend_hparams(default_hparams)
with self.test_session() as sess:
input_fn = make_input_fn(hparams, tf.contrib.learn.ModeKeys.TRAIN)
outputs = input_fn({})
sess.run(tf.tables_initializer())
iterator = outputs.make_initializable_iterator()
sess.run(iterator.initializer)
features = sess.run(iterator.get_next())
tf.logging.info("source: %s", features["source"])
tf.logging.info("target_input: %s", features["target_input"])
tf.logging.info("target_output: %s", features["target_output"])
tf.logging.info("source_sequence_length: %s",
features["source_sequence_length"])
tf.logging.info("target_sequence_length: %s",
features["target_sequence_length"])
示例8: test_text_corresponds_to_ids
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_text_corresponds_to_ids(self):
charset = create_fake_charset(36)
ids = tf.constant(
[[17, 14, 21, 21, 24], [32, 24, 27, 21, 13]], dtype=tf.int64)
charset_mapper = model.CharsetMapper(charset)
with self.test_session() as sess:
tf.tables_initializer().run()
text = sess.run(charset_mapper.get_text(ids))
self.assertAllEqual(text, ['hello', 'world'])
示例9: testDecodeObjectLabelUnrecognizedName
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelUnrecognizedName(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes_text = ['cat', 'cheetah']
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature('jpeg'),
'image/object/class/text':
dataset_util.bytes_list_feature(bbox_classes_text),
})).SerializeToString()
label_map_string = """
item {
id:2
name:'cat'
}
item {
id:1
name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
.get_shape().as_list()), [None])
with self.test_session() as sess:
sess.run(tf.tables_initializer())
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([2, -1],
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例10: testDecodeObjectLabelWithMappingWithDisplayName
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelWithMappingWithDisplayName(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes_text = ['cat', 'dog']
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature('jpeg'),
'image/object/class/text':
dataset_util.bytes_list_feature(bbox_classes_text),
})).SerializeToString()
label_map_string = """
item {
id:3
display_name:'cat'
}
item {
id:1
display_name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
.get_shape().as_list()), [None])
with self.test_session() as sess:
sess.run(tf.tables_initializer())
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([3, 1],
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例11: testDecodeObjectLabelWithMappingWithName
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelWithMappingWithName(self):
image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes_text = ['cat', 'dog']
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature('jpeg'),
'image/object/class/text':
dataset_util.bytes_list_feature(bbox_classes_text),
})).SerializeToString()
label_map_string = """
item {
id:3
name:'cat'
}
item {
id:1
name:'dog'
}
"""
label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
with tf.gfile.Open(label_map_path, 'wb') as f:
f.write(label_map_string)
example_decoder = tf_example_decoder.TfExampleDecoder(
label_map_proto_file=label_map_path)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
.get_shape().as_list()), [None])
with self.test_session() as sess:
sess.run(tf.tables_initializer())
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([3, 1],
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例12: execute_cpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
"""Constructs the graph, executes it on CPU and returns the result.
Args:
graph_fn: a callable that constructs the tensorflow graph to test. The
arguments of this function should correspond to `inputs`.
inputs: a list of numpy arrays to feed input to the computation graph.
Returns:
A list of numpy arrays or a scalar returned from executing the tensorflow
graph.
"""
with self.test_session(graph=tf.Graph()) as sess:
placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
results = graph_fn(*placeholders)
sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
tf.local_variables_initializer()])
materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
inputs)))
if (hasattr(materialized_results, '__len__') and
len(materialized_results) == 1 and
(isinstance(materialized_results, list) or
isinstance(materialized_results, tuple))):
materialized_results = materialized_results[0]
return materialized_results
示例13: test_make_initializable_iterator_with_hashTable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_make_initializable_iterator_with_hashTable(self):
keys = [1, 0, -1]
dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]])
table = tf.contrib.lookup.HashTable(
initializer=tf.contrib.lookup.KeyValueTensorInitializer(
keys=keys, values=list(reversed(keys))),
default_value=100)
dataset = dataset.map(table.lookup)
data = dataset_builder.make_initializable_iterator(dataset).get_next()
init = tf.tables_initializer()
with self.test_session() as sess:
sess.run(init)
self.assertAllEqual(sess.run(data), [-1, 100, 1, 100])
示例14: test_iterator_single_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_iterator_single_dataset(self):
"""Tests iterating over a single dataset.
"""
data = tx.data.MonoTextData(self._test_hparams)
iterator = tx.data.DataIterator(data)
data_batch = iterator.get_next()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
for _ in range(2):
iterator.switch_to_dataset(sess)
i = 1001
while True:
try:
data_batch_ = sess.run(data_batch)
self.assertEqual(
tf.compat.as_text(data_batch_['text'][0][0]),
str(i))
i += 1
except tf.errors.OutOfRangeError:
print('Done -- epoch limit reached')
self.assertEqual(i, 2001)
break
示例15: _run_and_test
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def _run_and_test(self, hparams):
# Construct database
scalar_data = tx.data.ScalarData(hparams)
self.assertEqual(scalar_data.list_items()[0],
hparams["dataset"]["data_name"])
iterator = scalar_data.dataset.make_initializable_iterator()
data_batch = iterator.get_next()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
sess.run(iterator.initializer)
i = 0
while True:
try:
# Run the logics
data_batch_ = sess.run(data_batch)
self.assertEqual(set(data_batch_.keys()),
set(scalar_data.list_items()))
value = data_batch_[scalar_data.data_name][0]
self.assertEqual(i, value)
i += 1
# pylint: disable=no-member
if hparams["dataset"]["data_type"] == "int":
self.assertTrue(isinstance(value, np.int32))
else:
self.assertTrue(isinstance(value, np.float32))
except tf.errors.OutOfRangeError:
print('Done -- epoch limit reached')
break