當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.tables_initializer方法代碼示例

本文整理匯總了Python中tensorflow.tables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.tables_initializer方法的具體用法?Python tensorflow.tables_initializer怎麽用?Python tensorflow.tables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.tables_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_create_summaries_is_runnable

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_create_summaries_is_runnable(self):
    ocr_model = self.create_model()
    data = data_provider.InputEndpoints(
        images=self.fake_images,
        images_orig=self.fake_images,
        labels=self.fake_labels,
        labels_one_hot=slim.one_hot_encoding(self.fake_labels,
                                             self.num_char_classes))
    endpoints = ocr_model.create_base(
        images=self.fake_images, labels_one_hot=None)
    charset = create_fake_charset(self.num_char_classes)
    summaries = ocr_model.create_summaries(
        data, endpoints, charset, is_training=False)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.local_variables_initializer())
      tf.tables_initializer().run()
      sess.run(summaries)  # just check it is runnable 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:model_test.py

示例2: execute_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
    """Constructs the graph, executes it on CPU and returns the result.

    Args:
      graph_fn: a callable that constructs the tensorflow graph to test. The
        arguments of this function should correspond to `inputs`.
      inputs: a list of numpy arrays to feed input to the computation graph.

    Returns:
      A list of numpy arrays or a scalar returned from executing the tensorflow
      graph.
    """
    with self.test_session(graph=tf.Graph()) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      results = graph_fn(*placeholders)
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
                                                                  inputs)))
      if (len(materialized_results) == 1
          and (isinstance(materialized_results, list)
               or isinstance(materialized_results, tuple))):
        materialized_results = materialized_results[0]
    return materialized_results 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:26,代碼來源:test_case.py

示例3: load_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def load_model(sess, ckpt):
    with sess.as_default():
        with sess.graph.as_default():
            init_ops = [tf.global_variables_initializer(),
                        tf.local_variables_initializer(), tf.tables_initializer()]
            sess.run(init_ops)
            # load saved model
            ckpt_path = tf.train.latest_checkpoint(ckpt)
            if ckpt_path:
                print("Loading saved model: " + ckpt_path)
            else:
                raise ValueError("No checkpoint found in {}".format(ckpt))
            # reader = tf.train.NewCheckpointReader(ckpt+'model.ckpt_0.876-580500')
            # variables = reader.get_variable_to_shape_map()
            # for v in variables:
            #     print(v)
            saver = tf.train.Saver()
            saver.restore(sess, ckpt_path) 
開發者ID:Lapis-Hong,項目名稱:TransE-Knowledge-Graph-Embedding,代碼行數:20,代碼來源:utils.py

示例4: make_set_filter_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def make_set_filter_fn(elements):
    """Constructs a TensorFlow "set" data structure.

    Note that sets returned by this function are uninitialized. Initialize them
    by calling `sess.run(tf.tables_initializer())`

    Args:
        elements: A list of non-Tensor elements.

    Returns:
        A function that when called with a single tensor argument, returns
        a boolean tensor if the argument is in the set.
    """
    table = tf.contrib.lookup.HashTable(
        tf.contrib.lookup.KeyValueTensorInitializer(
            elements, tf.tile([1], [len(elements)])
        ),
        default_value=0,
    )

    return lambda x: tf.equal(table.lookup(tf.dtypes.cast(x, tf.int32)), 1) 
開發者ID:uizard-technologies,項目名稱:realmix,代碼行數:23,代碼來源:utils.py

示例5: execute_tpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_tpu(self, graph_fn, inputs):
    """Constructs the graph, executes it on TPU and returns the result.

    Args:
      graph_fn: a callable that constructs the tensorflow graph to test. The
        arguments of this function should correspond to `inputs`.
      inputs: a list of numpy arrays to feed input to the computation graph.

    Returns:
      A list of numpy arrays or a scalar returned from executing the tensorflow
      graph.
    """
    with self.test_session(graph=tf.Graph()) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      tpu_computation = tpu.rewrite(graph_fn, placeholders)
      sess.run(tpu.initialize_system())
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(tpu_computation,
                                      feed_dict=dict(zip(placeholders, inputs)))
      sess.run(tpu.shutdown_system())
      if len(materialized_results) == 1:
        materialized_results = materialized_results[0]
    return materialized_results 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:26,代碼來源:test_case.py

示例6: execute_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
    """Constructs the graph, executes it on CPU and returns the result.

    Args:
      graph_fn: a callable that constructs the tensorflow graph to test. The
        arguments of this function should correspond to `inputs`.
      inputs: a list of numpy arrays to feed input to the computation graph.

    Returns:
      A list of numpy arrays or a scalar returned from executing the tensorflow
      graph.
    """
    with self.test_session(graph=tf.Graph()) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      results = graph_fn(*placeholders)
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
                                                                  inputs)))
      if len(materialized_results) == 1:
        materialized_results = materialized_results[0]
    return materialized_results 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:24,代碼來源:test_case.py

示例7: testTrainInputFn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testTrainInputFn(self):
    nmt_parser = argparse.ArgumentParser()
    nmt.add_arguments(nmt_parser)
    flags, _ = nmt_parser.parse_known_args()
    update_flags(flags, "input_fn_test")
    default_hparams = nmt.create_hparams(flags)
    hparams = nmt.extend_hparams(default_hparams)

    with self.test_session() as sess:
      input_fn = make_input_fn(hparams, tf.contrib.learn.ModeKeys.TRAIN)
      outputs = input_fn({})
      sess.run(tf.tables_initializer())
      iterator = outputs.make_initializable_iterator()
      sess.run(iterator.initializer)
      features = sess.run(iterator.get_next())
      tf.logging.info("source: %s", features["source"])
      tf.logging.info("target_input: %s", features["target_input"])
      tf.logging.info("target_output: %s", features["target_output"])
      tf.logging.info("source_sequence_length: %s",
                      features["source_sequence_length"])
      tf.logging.info("target_sequence_length: %s",
                      features["target_sequence_length"]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:24,代碼來源:estimator_test.py

示例8: test_text_corresponds_to_ids

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_text_corresponds_to_ids(self):
    charset = create_fake_charset(36)
    ids = tf.constant(
        [[17, 14, 21, 21, 24], [32, 24, 27, 21, 13]], dtype=tf.int64)
    charset_mapper = model.CharsetMapper(charset)

    with self.test_session() as sess:
      tf.tables_initializer().run()
      text = sess.run(charset_mapper.get_text(ids))

    self.assertAllEqual(text, ['hello', 'world']) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:13,代碼來源:model_test.py

示例9: testDecodeObjectLabelUnrecognizedName

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelUnrecognizedName(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes_text = ['cat', 'cheetah']
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    dataset_util.bytes_feature(encoded_jpeg),
                'image/format':
                    dataset_util.bytes_feature('jpeg'),
                'image/object/class/text':
                    dataset_util.bytes_list_feature(bbox_classes_text),
            })).SerializeToString()

    label_map_string = """
      item {
        id:2
        name:'cat'
      }
      item {
        id:1
        name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)
    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
                         .get_shape().as_list()), [None])

    with self.test_session() as sess:
      sess.run(tf.tables_initializer())
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([2, -1],
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:43,代碼來源:tf_example_decoder_test.py

示例10: testDecodeObjectLabelWithMappingWithDisplayName

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelWithMappingWithDisplayName(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes_text = ['cat', 'dog']
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    dataset_util.bytes_feature(encoded_jpeg),
                'image/format':
                    dataset_util.bytes_feature('jpeg'),
                'image/object/class/text':
                    dataset_util.bytes_list_feature(bbox_classes_text),
            })).SerializeToString()

    label_map_string = """
      item {
        id:3
        display_name:'cat'
      }
      item {
        id:1
        display_name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)
    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
                         .get_shape().as_list()), [None])

    with self.test_session() as sess:
      sess.run(tf.tables_initializer())
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([3, 1],
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:43,代碼來源:tf_example_decoder_test.py

示例11: testDecodeObjectLabelWithMappingWithName

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def testDecodeObjectLabelWithMappingWithName(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    bbox_classes_text = ['cat', 'dog']
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    dataset_util.bytes_feature(encoded_jpeg),
                'image/format':
                    dataset_util.bytes_feature('jpeg'),
                'image/object/class/text':
                    dataset_util.bytes_list_feature(bbox_classes_text),
            })).SerializeToString()

    label_map_string = """
      item {
        id:3
        name:'cat'
      }
      item {
        id:1
        name:'dog'
      }
    """
    label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt')
    with tf.gfile.Open(label_map_path, 'wb') as f:
      f.write(label_map_string)
    example_decoder = tf_example_decoder.TfExampleDecoder(
        label_map_proto_file=label_map_path)
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_classes]
                         .get_shape().as_list()), [None])

    with self.test_session() as sess:
      sess.run(tf.tables_initializer())
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([3, 1],
                        tensor_dict[fields.InputDataFields.groundtruth_classes]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:43,代碼來源:tf_example_decoder_test.py

示例12: execute_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def execute_cpu(self, graph_fn, inputs):
    """Constructs the graph, executes it on CPU and returns the result.

    Args:
      graph_fn: a callable that constructs the tensorflow graph to test. The
        arguments of this function should correspond to `inputs`.
      inputs: a list of numpy arrays to feed input to the computation graph.

    Returns:
      A list of numpy arrays or a scalar returned from executing the tensorflow
      graph.
    """
    with self.test_session(graph=tf.Graph()) as sess:
      placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs]
      results = graph_fn(*placeholders)
      sess.run([tf.global_variables_initializer(), tf.tables_initializer(),
                tf.local_variables_initializer()])
      materialized_results = sess.run(results, feed_dict=dict(zip(placeholders,
                                                                  inputs)))

      if (hasattr(materialized_results, '__len__') and
          len(materialized_results) == 1 and
          (isinstance(materialized_results, list) or
           isinstance(materialized_results, tuple))):
        materialized_results = materialized_results[0]
    return materialized_results 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:28,代碼來源:test_case.py

示例13: test_make_initializable_iterator_with_hashTable

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_make_initializable_iterator_with_hashTable(self):
    keys = [1, 0, -1]
    dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]])
    table = tf.contrib.lookup.HashTable(
        initializer=tf.contrib.lookup.KeyValueTensorInitializer(
            keys=keys, values=list(reversed(keys))),
        default_value=100)
    dataset = dataset.map(table.lookup)
    data = dataset_builder.make_initializable_iterator(dataset).get_next()
    init = tf.tables_initializer()

    with self.test_session() as sess:
      sess.run(init)
      self.assertAllEqual(sess.run(data), [-1, 100, 1, 100]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:16,代碼來源:dataset_builder_test.py

示例14: test_iterator_single_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def test_iterator_single_dataset(self):
        """Tests iterating over a single dataset.
        """
        data = tx.data.MonoTextData(self._test_hparams)

        iterator = tx.data.DataIterator(data)
        data_batch = iterator.get_next()

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            sess.run(tf.tables_initializer())

            for _ in range(2):
                iterator.switch_to_dataset(sess)
                i = 1001
                while True:
                    try:
                        data_batch_ = sess.run(data_batch)
                        self.assertEqual(
                            tf.compat.as_text(data_batch_['text'][0][0]),
                            str(i))
                        i += 1
                    except tf.errors.OutOfRangeError:
                        print('Done -- epoch limit reached')
                        self.assertEqual(i, 2001)
                        break 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:29,代碼來源:data_iterators_test.py

示例15: _run_and_test

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tables_initializer [as 別名]
def _run_and_test(self, hparams):
        # Construct database
        scalar_data = tx.data.ScalarData(hparams)

        self.assertEqual(scalar_data.list_items()[0],
                         hparams["dataset"]["data_name"])

        iterator = scalar_data.dataset.make_initializable_iterator()
        data_batch = iterator.get_next()

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            sess.run(tf.tables_initializer())
            sess.run(iterator.initializer)

            i = 0
            while True:
                try:
                    # Run the logics
                    data_batch_ = sess.run(data_batch)
                    self.assertEqual(set(data_batch_.keys()),
                                     set(scalar_data.list_items()))
                    value = data_batch_[scalar_data.data_name][0]
                    self.assertEqual(i, value)
                    i += 1
                    # pylint: disable=no-member
                    if hparams["dataset"]["data_type"] == "int":
                        self.assertTrue(isinstance(value, np.int32))
                    else:
                        self.assertTrue(isinstance(value, np.float32))
                except tf.errors.OutOfRangeError:
                    print('Done -- epoch limit reached')
                    break 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:36,代碼來源:scalar_data_test.py


注:本文中的tensorflow.tables_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。