當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.svd方法代碼示例

本文整理匯總了Python中tensorflow.svd方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.svd方法的具體用法?Python tensorflow.svd怎麽用?Python tensorflow.svd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.svd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_value_updater

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def get_value_updater(self, data, new_mean, gamma_weighted, gamma_sum):
        tf_new_differences = tf.subtract(data, tf.expand_dims(new_mean, 0))
        tf_sq_dist_matrix = tf.matmul(tf.expand_dims(tf_new_differences, 2), tf.expand_dims(tf_new_differences, 1))
        tf_new_covariance = tf.reduce_sum(tf_sq_dist_matrix * tf.expand_dims(tf.expand_dims(gamma_weighted, 1), 2), 0)

        if self.has_prior:
            tf_new_covariance = self.get_prior_adjustment(tf_new_covariance, gamma_sum)

        tf_s, tf_u, _ = tf.svd(tf_new_covariance)

        tf_required_eigvals = tf_s[:self.rank]
        tf_required_eigvecs = tf_u[:, :self.rank]

        tf_new_baseline = (tf.trace(tf_new_covariance) - tf.reduce_sum(tf_required_eigvals)) / self.tf_rest
        tf_new_eigvals = tf_required_eigvals - tf_new_baseline
        tf_new_eigvecs = tf.transpose(tf_required_eigvecs)

        return tf.group(
            self.tf_baseline.assign(tf_new_baseline),
            self.tf_eigvals.assign(tf_new_eigvals),
            self.tf_eigvecs.assign(tf_new_eigvecs)
        ) 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:24,代碼來源:sparse_covariance.py

示例2: _symmetric_matrix_square_root

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def _symmetric_matrix_square_root(mat, eps=1e-10):
    """Compute square root of a symmetric matrix.
    Note that this is different from an elementwise square root. We want to
    compute M' where M' = sqrt(mat) such that M' * M' = mat.
    Also note that this method **only** works for symmetric matrices.
    Args:
      mat: Matrix to take the square root of.
      eps: Small epsilon such that any element less than eps will not be square
        rooted to guard against numerical instability.
    Returns:
      Matrix square root of mat.
    """
    # Unlike numpy, tensorflow's return order is (s, u, v)
    s, u, v = tf.svd(mat)
    # sqrt is unstable around 0, just use 0 in such case
    si = tf.where(tf.less(s, eps), s, tf.sqrt(s))
    # Note that the v returned by Tensorflow is v = V
    # (when referencing the equation A = U S V^T)
    # This is unlike Numpy which returns v = V^T
    return tf.matmul(
        tf.matmul(u, tf.diag(si)), v, transpose_b=True) 
開發者ID:openai,項目名稱:glow,代碼行數:23,代碼來源:tfops.py

示例3: SVD

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def SVD(X, n, name = None):
	with tf.variable_scope(name):
		sz = X.get_shape().as_list()
		if len(sz)>2:
			x = tf.reshape(X,[-1,sz[1]*sz[2],sz[3]])
			n = min(n, sz[1]*sz[2], sz[3])
		else:
			x = tf.expand_dims(X, 1)
			n = 1

		with tf.device('CPU'):
			g = tf.get_default_graph()
			with g.gradient_override_map({"Svd": "Svd_"}):
				s,u,v = tf.svd(x,full_matrices=False)
				
		s = removenan(s)
		v = removenan(v)
		u = removenan(u)
		
		s = tf.nn.l2_normalize(tf.slice(s,[0,0],[-1,n]),1)
		U = tf.nn.l2_normalize(tf.slice(u,[0,0,0],[-1,-1,n]),1)
		V = tf.nn.l2_normalize(tf.slice(v,[0,0,0],[-1,-1,n]),1)
		
		return s, U, V 
開發者ID:yyht,項目名稱:BERT,代碼行數:26,代碼來源:svp.py

示例4: guarded_matrix_solve_ls

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def guarded_matrix_solve_ls(A, b, W, condition_number_cap=1e5):
    # Solve weighted least square ||\sqrt(W)(Ax-b)||^2
    # A - BxNxD
    # b - BxNx1
    # W - BxN

    sqrt_W = tf.sqrt(tf.maximum(W, SQRT_EPS)) # BxN
    A *= tf.expand_dims(sqrt_W, axis=2) # BxNxD
    b *= tf.expand_dims(sqrt_W, axis=2) # BxNx1
    # Compute singular value, trivializing the problem when condition number is too large
    AtA = tf.matmul(a=A, b=A, transpose_a=True)
    s, _, _ = [tf.stop_gradient(u) for u in tf.svd(AtA)] # s will be BxD
    mask = tf.less(s[:, 0] / s[:, -1], condition_number_cap) # B
    A *= tf.to_float(tf.expand_dims(tf.expand_dims(mask, axis=1), axis=2)) # zero out badly conditioned data
    x = tf.matrix_solve_ls(A, b, l2_regularizer=LS_L2_REGULARIZER, fast=True) # BxDx1 
    return tf.squeeze(x, axis=2) # BxD 
開發者ID:lingxiaoli94,項目名稱:SPFN,代碼行數:18,代碼來源:geometry_utils.py

示例5: lipschitz

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def lipschitz(self):
        """Return the Lipschitz constant as a Tensor.

        This assumes that only contractive nonlinearities are used! Examples
        are ReLUs and Sigmoids.

        Returns
        -------
        lipschitz : Tensor
            The Lipschitz constant of the neural network.

        """
        lipschitz = tf.constant(1, config.dtype)

        for W, b in self._parameter_iter():
            # lipschitz *= tf.reduce_max(tf.svd(W, compute_uv=False))
            lipschitz *= tf.reduce_max(self._svd(W))

        return lipschitz 
開發者ID:befelix,項目名稱:safe_learning,代碼行數:21,代碼來源:functions.py

示例6: _svd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def _svd(A, name=None):
        """Tensorflow svd with gradient.

        Parameters
        ----------
        A : Tensor
            The matrix for which to compute singular values.
        name : string, optional

        Returns
        -------
        s : Tensor
            The singular values of A.

        """
        S0, U0, V0 = map(tf.stop_gradient,
                         tf.svd(A, full_matrices=True, name=name))
        # A = U * S * V.T
        # S = inv(U) * A * inv(V.T) = U.T * A * V  (orthogonal matrices)
        S = tf.matmul(U0, tf.matmul(A, V0),
                      transpose_a=True)
        return tf.matrix_diag_part(S) 
開發者ID:befelix,項目名稱:safe_learning,代碼行數:24,代碼來源:functions.py

示例7: estimate_hom

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def estimate_hom(src, dst):
    rx = src[:,:,0:1]
    ry = src[:,:,1:2]
    x = dst[:,:,0:1]
    y = dst[:,:,1:2]
    num_batch = tf.shape(src)[0]
    num_pts = tf.shape(src)[1]
    _0 = tf.zeros([num_batch, num_pts, 3])
    _1 = tf.ones([num_batch, num_pts, 1])
    A_even_rows = tf.concat([-rx, -ry, -_1, _0, rx*x, ry*x, x], axis=-1)
    A_odd_rows = tf.concat([_0, -rx, -ry, -_1, rx*y, ry*y, y], axis=-1)
    
    A = tf.concat([A_even_rows, A_odd_rows], axis=-1)
    A = tf.reshape(A, [num_batch, 2*num_pts, 9])
    _, _, V = tf.svd(A, full_matrices=True)
    return tf.reshape(V[:,:,-1], [num_batch, 3, 3]) 
開發者ID:rpng,項目名稱:calc2.0,代碼行數:18,代碼來源:layers.py

示例8: spectral_norm_variable_initializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def spectral_norm_variable_initializer(shape, dtype=tf.float32, partition_info=None):
    """ This function provides customized initializer for tf.get_variable()

    :param shape:
    :param dtype:
    :param partition_info: this is required by tf.layers, but ignored in many tf.initializer. Here we ignore it.
    :return:
    """
    variable = tf.random_normal(shape=shape, stddev=1.0, dtype=dtype)

    if len(shape) > 2:
        var_reshaped = tf.reshape(variable, shape=[-1, shape[-1]])
        sigma = tf.svd(var_reshaped, full_matrices=False, compute_uv=False)[0]
    else:
        sigma = tf.svd(variable, full_matrices=False, compute_uv=False)[0]

    return variable / (sigma + FLAGS.EPSI)


######################################################################## 
開發者ID:richardwth,項目名稱:MMD-GAN,代碼行數:22,代碼來源:layer_func.py

示例9: set_similarity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def set_similarity(self, valid_examples=None, pca=True):
        if valid_examples == None:
            if pca:
                valid_examples = np.array(range(20))
            else:
                valid_examples = np.array(range(self.num_vocabulary))
        self.valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
        self.norm = tf.sqrt(tf.reduce_sum(tf.square(self.g_embeddings), 1, keep_dims=True))
        self.normalized_embeddings = self.g_embeddings / self.norm
        # PCA
        if self.num_vocabulary >= 20 and pca == True:
            emb = tf.matmul(self.normalized_embeddings, tf.transpose(self.normalized_embeddings))
            s, u, v = tf.svd(emb)
            u_r = tf.strided_slice(u, begin=[0, 0], end=[20, self.num_vocabulary], strides=[1, 1])
            self.normalized_embeddings = tf.matmul(u_r, self.normalized_embeddings)
        self.valid_embeddings = tf.nn.embedding_lookup(
            self.normalized_embeddings, self.valid_dataset)
        self.similarity = tf.matmul(self.valid_embeddings, tf.transpose(self.normalized_embeddings)) 
開發者ID:geek-ai,項目名稱:Texygen,代碼行數:20,代碼來源:OracleGru.py

示例10: set_similarity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def set_similarity(self, valid_examples=None, pca=True):
        one_hot = tf.constant(np.eye(self.num_vocabulary))
        if valid_examples == None:
            if pca:
                valid_examples = np.array(range(20))
            else:
                valid_examples = np.array(range(self.num_vocabulary))
        self.valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
        self.norm = tf.sqrt(tf.reduce_sum(tf.square(one_hot), 1, keep_dims=True))
        self.normalized_embeddings = one_hot / self.norm
        # PCA
        if self.num_vocabulary >= 20 and pca == True:
            emb = tf.matmul(self.normalized_embeddings, tf.transpose(self.normalized_embeddings))
            s, u, v = tf.svd(emb)
            u_r = tf.strided_slice(u, begin=[0, 0], end=[20, self.num_vocabulary], strides=[1, 1])
            self.normalized_embeddings = tf.matmul(u_r, self.normalized_embeddings)
        self.valid_embeddings = tf.nn.embedding_lookup(
            self.normalized_embeddings, self.valid_dataset)
        self.similarity = tf.matmul(self.valid_embeddings, tf.transpose(self.normalized_embeddings)) 
開發者ID:geek-ai,項目名稱:Texygen,代碼行數:21,代碼來源:GsganGenerator.py

示例11: random_orthonormal_initializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def random_orthonormal_initializer(shape, dtype=tf.float32,
                                   partition_info=None):  # pylint: disable=unused-argument
  """Variable initializer that produces a random orthonormal matrix."""
  if len(shape) != 2 or shape[0] != shape[1]:
    raise ValueError("Expecting square shape, got %s" % shape)
  _, u, _ = tf.svd(tf.random_normal(shape, dtype=dtype), full_matrices=True)
  return u 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:9,代碼來源:skip_thoughts_model.py

示例12: test_Svd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def test_Svd(self):
        t = tf.svd(self.random(4, 5, 3, 2).astype("float32"))
        self.check(t, ndigits=4, abs=True)


    #
    # complex number ops
    # 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:10,代碼來源:ops.py

示例13: pca

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def pca(mat):
    mat = tf.constant(mat, dtype=tf.float32)
    mean = tf.reduce_mean(mat, 0)
    less = mat - mean
    s, u, v = tf.svd(less, full_matrices=True, compute_uv=True)

    s2 = s ** 2
    variance_ratio = s2 / tf.reduce_sum(s2)

    with tf.Session() as session:
        run = session.run([variance_ratio])
    return run 
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:14,代碼來源:pca.py

示例14: posdef_eig_svd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def posdef_eig_svd(mat):
  """Computes the singular values and left singular vectors of a matrix."""
  evals, evecs, _ = tf.svd(mat)

  return evals, evecs 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:7,代碼來源:utils.py

示例15: posdef_eig_self_adjoint

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import svd [as 別名]
def posdef_eig_self_adjoint(mat):
  """Computes eigendecomposition using self_adjoint_eig."""
  evals, evecs = tf.self_adjoint_eig(mat)
  evals = tf.abs(evals)  # Should be equivalent to svd approach.

  return evals, evecs 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:8,代碼來源:utils.py


注:本文中的tensorflow.svd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。