當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.summary方法代碼示例

本文整理匯總了Python中tensorflow.summary方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.summary方法的具體用法?Python tensorflow.summary怎麽用?Python tensorflow.summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.summary方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: propagate_summary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def propagate_summary(self, summary_key):
        """
        Propagates a single summary op of this Component to its parents' summaries registries.

        Args:
            summary_key (str): The lookup key for the summary to propagate.
        """
        # Return if there is no parent.
        if self.parent_component is None:
            return

        # If already there -> Error.
        if summary_key in self.parent_component.summaries:
            raise RLGraphError("ERROR: Summary registry of '{}' already has a summary under key '{}'!".
                               format(self.parent_component.name, summary_key))
        self.parent_component.summaries[summary_key] = self.summaries[summary_key]

        # Recurse up the container hierarchy.
        self.parent_component.propagate_summary(summary_key) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:21,代碼來源:component.py

示例2: set_summary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def set_summary(self, summary_op, summary_description=None, collections=None):
    """Annotates a tensor with a tf.summary operation

    This causes self.out_tensor to be logged to Tensorboard.

    Parameters
    ----------
    summary_op: str
      summary operation to annotate node
    summary_description: object, optional
      Optional summary_pb2.SummaryDescription()
    collections: list of graph collections keys, optional
      New summary op is added to these collections. Defaults to [GraphKeys.SUMMARIES]
    """
    supported_ops = {'tensor_summary', 'scalar', 'histogram'}
    if summary_op not in supported_ops:
      raise ValueError(
          "Invalid summary_op arg. Only 'tensor_summary', 'scalar', 'histogram' supported"
      )
    self.summary_op = summary_op
    self.summary_description = summary_description
    self.collections = collections
    self.tensorboard = True 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:25,代碼來源:layers.py

示例3: add_summary_to_tg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def add_summary_to_tg(self, tb_input=None):
    """
    Create the summary operation for this layer, if set_summary() has been called on it.
    Can only be called after self.create_layer to gaurentee that name is not None.

    Parameters
    ----------
    tb_input: tensor
      the tensor to log to Tensorboard. If None, self.out_tensor is used.
    """
    if self.tensorboard == False:
      return
    if tb_input == None:
      tb_input = self.out_tensor
    if self.summary_op == "tensor_summary":
      tf.summary.tensor_summary(self.name, tb_input, self.summary_description, 
                                self.collections)
    elif self.summary_op == 'scalar':
      tf.summary.scalar(self.name, tb_input, self.collections)
    elif self.summary_op == 'histogram':
      tf.summary.histogram(self.name, tb_input, self.collections) 
開發者ID:simonfqy,項目名稱:PADME,代碼行數:23,代碼來源:layers.py

示例4: summarize_features

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def summarize_features(features, num_shards=1):
  """Generate summaries for features."""
  if not common_layers.should_generate_summaries():
    return

  with tf.name_scope("input_stats"):
    for (k, v) in sorted(six.iteritems(features)):
      if (isinstance(v, tf.Tensor) and (v.get_shape().ndims > 1) and
          (v.dtype != tf.string)):
        tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards)
        tf.summary.scalar("%s_length" % k, tf.shape(v)[1])
        nonpadding = tf.to_float(tf.not_equal(v, 0))
        nonpadding_tokens = tf.reduce_sum(nonpadding)
        tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens)
        tf.summary.scalar("%s_nonpadding_fraction" % k,
                          tf.reduce_mean(nonpadding)) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:t2t_model.py

示例5: estimator_spec_eval

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def estimator_spec_eval(self, features, logits, labels, loss, losses_dict):
    """Constructs `tf.estimator.EstimatorSpec` for EVAL (evaluation) mode."""
    estimator_spec = super(TransformerAE, self).estimator_spec_eval(
        features, logits, labels, loss, losses_dict)
    if common_layers.is_xla_compiled():
      # For TPUs (and XLA more broadly?), do not add summary hooks that depend
      # on losses; they are not supported.
      return estimator_spec

    summary_op = tf.get_collection(tf.GraphKeys.SUMMARIES, scope="losses")
    summary_op.extend(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="loss"))
    summary_op.append(tf.summary.scalar("loss", loss))
    summary_saver_hook = tf.train.SummarySaverHook(
        save_steps=100,
        summary_op=summary_op,
        output_dir=os.path.join(self.hparams.model_dir, "eval"))

    hooks = list(estimator_spec.evaluation_hooks)
    hooks.append(summary_saver_hook)
    return estimator_spec._replace(evaluation_hooks=hooks) 
開發者ID:yyht,項目名稱:BERT,代碼行數:22,代碼來源:transformer_vae.py

示例6: on_epoch_begin

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def on_epoch_begin(self, epoch, logs=None):
        """Add user-def. op to Model eval_function callbacks, reset batch count."""

        # check if histogram summary should be run for this epoch
        if self.user_defined_freq and epoch % self.user_defined_freq == 0:
            self._epoch = epoch
            # pylint: disable=protected-access
            # add the user-defined summary ops if it should run this epoch
            self.model._make_eval_function()
            if self.merged not in self.model._eval_function.fetches:
                self.model._eval_function.fetches.append(self.merged)
                self.model._eval_function.fetch_callbacks[
                    self.merged] = self._fetch_callback
            # pylint: enable=protected-access

        super(CustomTensorBoard, self).on_epoch_begin(epoch, logs=None) 
開發者ID:delve-team,項目名稱:delve,代碼行數:18,代碼來源:kerascallback.py

示例7: test_tf_summary_export

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def test_tf_summary_export(self):
        # Ensure that TF wasn't already imported, since we want this test to cover
        # the entire flow of "import tensorflow; use tf.summary" and if TF was in
        # fact already imported that reduces the comprehensiveness of the test.
        # This means this test has to be kept in its own file and that no other
        # test methods in this file should import tensorflow.
        self.assertEqual("notfound", sys.modules.get("tensorflow", "notfound"))
        import tensorflow as tf

        if not tf.__version__.startswith("2."):
            if hasattr(tf, "compat") and hasattr(tf.compat, "v2"):
                tf = tf.compat.v2
            else:
                self.skipTest("TF v2 summary API not available")
        # Check that tf.summary contains both TB-provided and TF-provided symbols.
        expected_symbols = frozenset(
            ["scalar", "image", "audio", "histogram", "text"]
            + ["write", "create_file_writer", "SummaryWriter"]
        )
        self.assertLessEqual(expected_symbols, frozenset(dir(tf.summary)))
        # Ensure we can dereference symbols as well.
        print(tf.summary.scalar)
        print(tf.summary.write) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:25,代碼來源:tf_summary_test.py

示例8: _try_listen_tf_v1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def _try_listen_tf_v1(self):
        if not _tf_version().startswith("1."):
            raise util.TryFailed()
        try:
            # pylint: disable=import-error,no-name-in-module
            from tensorflow.compat.v1.summary import FileWriter
        except Exception as e:
            self.log.debug(
                "error importing tensorflow.compat.v1.summary.FileWriter: %s", e
            )
            raise util.TryFailed()
        else:
            self.log.debug(
                "wrapping tensorflow.compat.v1.summary.FileWriter.add_summary"
            )
            python_util.listen_method(FileWriter, "add_summary", self._handle_summary) 
開發者ID:guildai,項目名稱:guildai,代碼行數:18,代碼來源:summary_util.py

示例9: execute

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def execute(self, *api_method_calls):
        # Fetch inputs for the different API-methods.
        fetch_dict, feed_dict = self.graph_builder.get_execution_inputs(*api_method_calls)
        for api_name in fetch_dict.keys():
            if api_name in self.summary_ops:
                fetch_dict[api_name].append(self.summary_ops[api_name])

        fetch_dict["__GLOBAL_TRAINING_TIMESTEP"] = self.global_training_timestep
        ret = self.monitored_session.run(
            fetch_dict, feed_dict=feed_dict, options=self.tf_session_options, run_metadata=self.run_metadata
        )
        global_training_timestep_value = ret["__GLOBAL_TRAINING_TIMESTEP"]
        del ret["__GLOBAL_TRAINING_TIMESTEP"]

        for api_name in fetch_dict.keys():
            if api_name in self.summary_ops:
                assert len(ret[api_name]) > 1, "Expected multiple values, but {} found".format(len(fetch_dict[api_name]))
                summary = ret[api_name].pop()
                # Assuming that all API methods are on the training timesteps.
                self.summary_writer.add_summary(summary, global_training_timestep_value)

        if self.profiling_enabled:
            self.update_profiler_if_necessary()

        if self.timeline_enabled:
            self.update_timeline_if_necessary()

        # Return single values instead of lists of 1 item, but keep inner dicts as-are.
        ret = {key: (value[0] if len(ret[key]) == 1 and not isinstance(ret[key], dict) else tuple(value)
               if not isinstance(value, dict) else value) for key, value in ret.items()}

        # If only one key in ret, remove it.
        if len(api_method_calls) == 1:
            ret = ret[next(iter(ret))]

        return ret 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:38,代碼來源:tensorflow_executor.py

示例10: register_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def register_variables(self, *variables):
        """
        Adds already created Variables to our registry. This could be useful if the variables are not created
        by our own `self.get_variable` method, but by some backend-specific object (e.g. tf.layers).
        Also auto-creates summaries (regulated by `self.summary_regexp`) for the given variables.

        Args:
            # TODO check if we warp PytorchVariable
            variables (Union[PyTorchVariable, SingleDataOp]): The Variable objects to register.
        """
        for var in variables:
            # Use our global_scope plus the var's name without anything in between.
            # e.g. var.name = "dense-layer/dense/kernel:0" -> key = "dense-layer/kernel"
            # key = re.sub(r'({}).*?([\w\-.]+):\d+$'.format(self.global_scope), r'\1/\2', var.name)
            key = re.sub(r':\d+$', "", var.name)
            # Already registered: Must be the same (shared) variable.
            if key in self.variable_registry:
                assert self.variable_registry[key] is var,\
                    "ERROR: Key '{}' in {}.variables already exists, but holds a different variable " \
                    "({} vs {})!".format(key, self.global_scope, self.variable_registry[key], var)
            # New variable: Register.
            else:
                self.variable_registry[key] = var
                # Auto-create the summary for the variable.
                scope_to_use = self.reuse_variable_scope or self.global_scope
                summary_name = var.name[len(scope_to_use) + (1 if scope_to_use else 0):]
                summary_name = re.sub(r':\d+$', "", summary_name)
                self.create_summary(summary_name, var) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:30,代碼來源:component.py

示例11: create_summary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def create_summary(self, name, values, summary_type="histogram"):
        """
        Creates a summary op (and adds it to the graph).
        Skips those, whose full name does not match `self.summary_regexp`.

        Args:
            name (str): The name for the summary. This has to match `self.summary_regexp`.
                The name should not contain a "summary"-prefix or any global scope information
                (both will be added automatically by this method).

            values (op): The op to summarize.

            summary_type (str): The summary type to create. Currently supported are:
                "histogram", "scalar" and "text".
        """
        # Prepend the "summaries/"-prefix.
        name = "summaries/" + name
        # Get global name.
        global_name = ((self.global_scope + "/") if self.global_scope else "") + name
        # Skip non matching summaries (all if summary_regexp is None).
        if self.summary_regexp is None or not re.search(self.summary_regexp, global_name):
            return

        summary = None
        if get_backend() == "tf":
            ctor = getattr(tf.summary, summary_type)
            summary = ctor(name, values)

        # Registers the new summary with this Component.
        if global_name in self.summaries:
            raise RLGraphError("ERROR: Summary with name '{}' already exists in {}'s summary "
                               "registry!".format(global_name, self.name))
        self.summaries[global_name] = summary
        self.propagate_summary(global_name) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:36,代碼來源:component.py

示例12: pop_summary_ops_buffer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def pop_summary_ops_buffer(self):
        """
        *Internal use only!* Pops the last frame of the summary ops buffer stack.

        Returns:
            The accumulated summary ops.
        """
        return self._summary_ops_buffer_stack.pop() 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:10,代碼來源:component.py

示例13: start_summary_ops_buffer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def start_summary_ops_buffer(self):
        """
        *Internal use only!* Starts a new frame in the summary ops buffer stack.
        """
        self._summary_ops_buffer_stack.append([]) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:7,代碼來源:component.py

示例14: summarize_hparams

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def summarize_hparams(self):
    def create_hparams_summary(hparams, name):
      hparams_strs = [tf.convert_to_tensor([k, str(v)])
                      for k, v in hparams.values().items()]
      tf.summary.text(name, tf.cast(tf.stack(hparams_strs), tf.string))

    create_hparams_summary(self._hparams, "%s_hparams" % self.name)
    if self._problem_hparams:
      create_hparams_summary(self._problem_hparams,
                             "%s_problem_hparams" % self.name)

  # Replace the two methods below in order to add custom SessionRunHooks to
  # the training procedure. 
開發者ID:yyht,項目名稱:BERT,代碼行數:15,代碼來源:t2t_model.py

示例15: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import summary [as 別名]
def loss(self, logits, features):
    if isinstance(logits, dict):
      losses = {}
      for k, v in six.iteritems(logits):
        losses[k] = self._loss_single(
            v,
            k,
            features[k],
            weights=features.get(k + "_mask"))

        n, d = losses[k]
        if common_layers.should_generate_summaries():
          tf.summary.scalar(k + "_loss", n / d)
          tf.summary.scalar(k + "_loss_num", n)
          tf.summary.scalar(k + "_loss_den", d)
          if getattr(self.hparams, "visualize_logits_histogram", False):
            hist = tf.summary.histogram
            hist(k + "_predict", tf.argmax(tf.squeeze(v), axis=-1))
            hist(k + "_targets", features[k])

      return tf.add_n([n / d for n, d in losses.values()])
    else:
      return self._loss_single(
          logits,
          "targets",
          features["targets"],
          weights=features.get("targets_mask")) 
開發者ID:yyht,項目名稱:BERT,代碼行數:29,代碼來源:t2t_model.py


注:本文中的tensorflow.summary方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。