當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.substr方法代碼示例

本文整理匯總了Python中tensorflow.substr方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.substr方法的具體用法?Python tensorflow.substr怎麽用?Python tensorflow.substr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.substr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _testElementWisePosLen

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _testElementWisePosLen(self, dtype):
    test_string = [[b"ten", b"eleven", b"twelve"],
                   [b"thirteen", b"fourteen", b"fifteen"],
                   [b"sixteen", b"seventeen", b"eighteen"]]
    position = np.array([[1, 2, 3],
                         [1, 2, 3],
                         [1, 2, 3]], dtype)
    length = np.array([[2, 3, 4],
                       [4, 3, 2],
                       [5, 5, 5]], dtype)
    expected_value = [[b"en", b"eve", b"lve"],
                      [b"hirt", b"urt", b"te"],
                      [b"ixtee", b"vente", b"hteen"]]

    substr_op = tf.substr(test_string, position, length)
    with self.test_session():
      substr = substr_op.eval()
      self.assertAllEqual(substr, expected_value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:substr_op_test.py

示例2: _testMismatchPosLenShapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _testMismatchPosLenShapes(self, dtype):
    test_string = [[b"ten", b"eleven", b"twelve"],
                   [b"thirteen", b"fourteen", b"fifteen"],
                   [b"sixteen", b"seventeen", b"eighteen"]]
    position = np.array([[1, 2, 3]], dtype)
    length = np.array([2, 3, 4], dtype)
    # Should fail: position/length have different rank
    with self.assertRaises(ValueError):
      substr_op = tf.substr(test_string, position, length)

    position = np.array([[1, 2, 3],
                         [1, 2, 3],
                         [1, 2, 3]], dtype)
    length = np.array([[2, 3, 4]], dtype)
    # Should fail: postion/length have different dimensionality
    with self.assertRaises(ValueError):
      substr_op = tf.substr(test_string, position, length) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:substr_op_test.py

示例3: _read_flow

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _read_flow(filenames, num_epochs=None):
    """Given a list of filenames, constructs a reader op for ground truth flow files."""
    filename_queue = tf.train.string_input_producer(filenames,
        shuffle=False, capacity=len(filenames), num_epochs=num_epochs)
    reader = tf.WholeFileReader()
    _, value = reader.read(filename_queue)
    value = tf.reshape(value, [1])
    value_width = tf.substr(value, 4, 4)
    value_height = tf.substr(value, 8, 4)
    width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), [])
    height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), [])

    value_flow = tf.substr(value, 12, 8 * width * height)
    flow = tf.decode_raw(value_flow, out_type=tf.float32)
    flow = tf.reshape(flow, [height, width, 2])
    mask = tf.to_float(tf.logical_and(flow[:, :, 0] < 1e9, flow[:, :, 1] < 1e9))
    mask = tf.reshape(mask, [height, width, 1])

    return flow, mask 
開發者ID:simonmeister,項目名稱:UnFlow,代碼行數:21,代碼來源:input.py

示例4: _read_flow

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _read_flow(filenames, num_epochs=None):
    """Given a list of filenames, constructs a reader op for ground truth flow files."""
    filename_queue = tf.train.string_input_producer(filenames,
        shuffle=False, capacity=len(filenames), num_epochs=num_epochs)
    reader = tf.WholeFileReader()
    _, value = reader.read(filename_queue)
    value = tf.reshape(value, [1])
    value_width = tf.substr(value, 4, 4)
    value_height = tf.substr(value, 8, 4)
    width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), [])
    height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), [])

    value_flow = tf.substr(value, 12, 8 * 436 * 1024)
    flow = tf.decode_raw(value_flow, out_type=tf.float32)

    return tf.reshape(flow, [436, 1024, 2]) 
開發者ID:simonmeister,項目名稱:UnFlow,代碼行數:18,代碼來源:input.py

示例5: read_semantic_gt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def read_semantic_gt(self, image_path):
        # tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
        path_length = string_length_tf(image_path)[0]
        file_extension = tf.substr(image_path, path_length - 3, 3)
        file_cond = tf.equal(file_extension, 'png')
        
        image  = tf.cond(file_cond, lambda: tf.image.decode_png(tf.read_file(image_path)), lambda: tf.zeros([self.params.height, self.params.width, 1], tf.uint8))

        # if the dataset is cityscapes, we crop the last fifth to remove the car hood
        if self.dataset == 'cityscapes':
            o_height    = tf.shape(image)[0]
            crop_height = (o_height * 4) // 5
            image  =  image[:crop_height,:,:]

        image = tf.to_int32(tf.image.resize_images(image,  [self.params.height, self.params.width], tf.image.ResizeMethod.NEAREST_NEIGHBOR))
        valid = tf.cond(file_cond, lambda: tf.ones([self.params.height, self.params.width, 1], tf.float32), lambda: tf.zeros([self.params.height, self.params.width, 1], tf.float32))

        return image, valid 
開發者ID:CVLAB-Unibo,項目名稱:Semantic-Mono-Depth,代碼行數:20,代碼來源:monodepth_dataloader.py

示例6: read_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def read_image(self, image_path):
        # tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
        path_length = string_length_tf(image_path)[0]
        file_extension = tf.substr(image_path, path_length - 3, 3)
        file_cond = tf.equal(file_extension, 'jpg')
        
        image  = tf.cond(file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)), lambda: tf.image.decode_png(tf.read_file(image_path)))

        # if the dataset is cityscapes, we crop the last fifth to remove the car hood
        if self.dataset == 'cityscapes':
            o_height    = tf.shape(image)[0]
            crop_height = (o_height * 4) // 5
            image  =  image[:crop_height,:,:]

        image  = tf.image.convert_image_dtype(image,  tf.float32)
        image  = tf.image.resize_images(image,  [self.params.height, self.params.width], tf.image.ResizeMethod.AREA)

        return image 
開發者ID:CVLAB-Unibo,項目名稱:Semantic-Mono-Depth,代碼行數:20,代碼來源:monodepth_dataloader.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def __init__(self, config, batch_size, one_hot=False):
        self.lookup = None
        reader = tf.TextLineReader()
        filename_queue = tf.train.string_input_producer(["chargan.txt"])
        key, x = reader.read(filename_queue)
        vocabulary = self.get_vocabulary()

        table = tf.contrib.lookup.string_to_index_table_from_tensor(
            mapping = vocabulary, default_value = 0)

        x = tf.string_join([x, tf.constant(" " * 64)]) 
        x = tf.substr(x, [0], [64])
        x = tf.string_split(x,delimiter='')
        x = tf.sparse_tensor_to_dense(x, default_value=' ')
        x = tf.reshape(x, [64])
        x = table.lookup(x)
        self.one_hot = one_hot
        if one_hot:
            x = tf.one_hot(x, len(vocabulary))
            x = tf.cast(x, dtype=tf.float32)
            x = tf.reshape(x, [1, int(x.get_shape()[0]), int(x.get_shape()[1]), 1])
        else:
            x = tf.cast(x, dtype=tf.float32)
            x -= len(vocabulary)/2.0
            x /= len(vocabulary)/2.0
            x = tf.reshape(x, [1,1, 64, 1])

        num_preprocess_threads = 8

        x = tf.train.shuffle_batch(
          [x],
          batch_size=batch_size,
          num_threads=num_preprocess_threads,
          capacity= 5000,
          min_after_dequeue=500,
          enqueue_many=True)

        self.x = x
        self.table = table 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:41,代碼來源:common.py

示例8: tf_startswith

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def tf_startswith(tensor, prefix, axis=None):
	return tf.reduce_all(tf.equal(tf.substr(tensor, 0, len(prefix)), prefix), axis=axis)



# --------------------------------------------------------------------------
# File readers and writers
# -------------------------------------------------------------------------- 
開發者ID:Octavian-ai,項目名稱:shortest-path,代碼行數:10,代碼來源:util.py

示例9: _testScalarString

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _testScalarString(self, dtype):
    test_string = b"Hello"
    position = np.array(1, dtype)
    length = np.array(3, dtype)
    expected_value = b"ell"

    substr_op = tf.substr(test_string, position, length)
    with self.test_session():
      substr = substr_op.eval()
      self.assertAllEqual(substr, expected_value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:substr_op_test.py

示例10: _testVectorStrings

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _testVectorStrings(self, dtype):
    test_string = [b"Hello", b"World"]
    position = np.array(1, dtype)
    length = np.array(3, dtype)
    expected_value = [b"ell", b"orl"]

    substr_op = tf.substr(test_string, position, length)
    with self.test_session():
      substr = substr_op.eval()
      self.assertAllEqual(substr, expected_value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:substr_op_test.py

示例11: _testMatrixStrings

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _testMatrixStrings(self, dtype):
    test_string = [[b"ten", b"eleven", b"twelve"],
                   [b"thirteen", b"fourteen", b"fifteen"],
                   [b"sixteen", b"seventeen", b"eighteen"]]
    position = np.array(1, dtype)
    length = np.array(4, dtype)
    expected_value = [[b"en", b"leve", b"welv"],
                      [b"hirt", b"ourt", b"ifte"],
                      [b"ixte", b"even", b"ight"]]

    substr_op = tf.substr(test_string, position, length)
    with self.test_session():
      substr = substr_op.eval()
      self.assertAllEqual(substr, expected_value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:16,代碼來源:substr_op_test.py

示例12: testWrongDtype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def testWrongDtype(self):
    with self.test_session():
      with self.assertRaises(TypeError):
        tf.substr(b"test", 3.0, 1)
      with self.assertRaises(TypeError):
        tf.substr(b"test", 3, 1.0) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:substr_op_test.py

示例13: _load_corpus

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def _load_corpus(self, corpus_dir):
        for fd in range(2, -1, -1):
            file_list = []
            if fd == 0:
                file_dir = os.path.join(corpus_dir, AUG0_FOLDER)
            elif fd == 1:
                file_dir = os.path.join(corpus_dir, AUG1_FOLDER)
            else:
                file_dir = os.path.join(corpus_dir, AUG2_FOLDER)

            for data_file in sorted(os.listdir(file_dir)):
                full_path_name = os.path.join(file_dir, data_file)
                if os.path.isfile(full_path_name) and data_file.lower().endswith('.txt'):
                    file_list.append(full_path_name)

            assert len(file_list) > 0
            dataset = tf.data.TextLineDataset(file_list)

            src_dataset = dataset.filter(lambda line:
                                         tf.logical_and(tf.size(line) > 0,
                                                        tf.equal(tf.substr(line, 0, 2), tf.constant('Q:'))))
            src_dataset = src_dataset.map(lambda line:
                                          tf.substr(line, 2, MAX_LEN)).prefetch(4096)
            tgt_dataset = dataset.filter(lambda line:
                                         tf.logical_and(tf.size(line) > 0,
                                                        tf.equal(tf.substr(line, 0, 2), tf.constant('A:'))))
            tgt_dataset = tgt_dataset.map(lambda line:
                                          tf.substr(line, 2, MAX_LEN)).prefetch(4096)

            src_tgt_dataset = tf.data.Dataset.zip((src_dataset, tgt_dataset))
            if fd == 1:
                src_tgt_dataset = src_tgt_dataset.repeat(self.hparams.aug1_repeat_times)
            elif fd == 2:
                src_tgt_dataset = src_tgt_dataset.repeat(self.hparams.aug2_repeat_times)

            if self.text_set is None:
                self.text_set = src_tgt_dataset
            else:
                self.text_set = self.text_set.concatenate(src_tgt_dataset) 
開發者ID:bshao001,項目名稱:ChatLearner,代碼行數:41,代碼來源:tokenizeddata.py

示例14: create_char_vectors_from_post

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def create_char_vectors_from_post(self, raw_post, mxlen):
        char2index = self.index
        if self.do_lowercase:
            raw_post = self.lowercase(raw_post)
        raw_post = tf.string_split(tf.reshape(raw_post, [-1]))
        culled_word_token_vals = tf.substr(raw_post.values, 0, self.mxwlen)
        char_tokens = tf.string_split(culled_word_token_vals, delimiter='')
        char_indices = char2index.lookup(char_tokens)
        return self.reshape_indices(char_indices, [mxlen, self.mxwlen]) 
開發者ID:dpressel,項目名稱:mead-baseline,代碼行數:11,代碼來源:preprocessors.py

示例15: generate_subword_feat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import substr [as 別名]
def generate_subword_feat(sentence,
                          subword_vocab_index,
                          word_max_length,
                          subword_max_length,
                          subword_size,
                          word_sos,
                          word_eos,
                          word_placeholder_enable,
                          subword_pad):
    def word_to_subword(word):
        """generate subwords for word"""
        word_len = tf.size(tf.string_split([word], delimiter=''))
        subwords = tf.substr([word], 0, subword_size)
        for i in range(1, subword_max_length):
            subwords = tf.cond(i+subword_size-1 < word_len,
                lambda: tf.concat([subwords, tf.substr([word], i, subword_size)], 0),
                lambda: subwords)
        
        subwords = tf.concat([subwords[:subword_max_length],
            tf.constant(subword_pad, shape=[subword_max_length])], axis=0)
        subwords = tf.reshape(subwords[:subword_max_length], shape=[subword_max_length])
        
        return subwords
    
    """generate subword feature for sentence"""
    words = tf.string_split([sentence], delimiter=' ').values
    if word_placeholder_enable == True:
        words = tf.concat([[word_sos], words[:word_max_length], [word_eos],
            tf.constant(subword_pad, shape=[word_max_length])], axis=0)
        word_max_length = word_max_length + 2
    else:
        words = tf.concat([words[:word_max_length],
            tf.constant(subword_pad, shape=[word_max_length])], axis=0)
    
    words = tf.reshape(words[:word_max_length], shape=[word_max_length])
    word_subwords = tf.map_fn(word_to_subword, words)
    word_subwords = tf.cast(subword_vocab_index.lookup(word_subwords), dtype=tf.int32)
    
    return word_subwords 
開發者ID:stevezheng23,項目名稱:reading_comprehension_tf,代碼行數:41,代碼來源:data_util.py


注:本文中的tensorflow.substr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。