當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.string_to_number方法代碼示例

本文整理匯總了Python中tensorflow.string_to_number方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.string_to_number方法的具體用法?Python tensorflow.string_to_number怎麽用?Python tensorflow.string_to_number使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.string_to_number方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def decode(self, data, items):
        """Decodes the data to return the tensors specified by the list of
        items.

        Args:
            data: The scalar data to decode.
            items: A list of strings, each of which is the name of the resulting
                tensors to retrieve.

        Returns:
            A list of tensors, each of which corresponds to each item.
        """
        data = tf.reshape(data, shape=[])
        if data.dtype is tf.string:
            decoded_data = tf.string_to_number(data, out_type=self._dtype)
        else:
            decoded_data = tf.cast(data, self._dtype)
        outputs = {
            self._data_name: decoded_data
        }
        return [outputs[item] for item in items] 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:23,代碼來源:data_decoders.py

示例2: _imagenet_load_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def _imagenet_load_file(path, epochs=None, shuffle=True, seed=0, subset='train', prepare_path=True):
    IMAGENET_ROOT = os.environ.get('IMAGENET_DIR', '')
    if not isinstance(path, list):
        path = [path]
    filename_queue = tf.train.string_input_producer(path,
            num_epochs=epochs, shuffle=shuffle, seed=seed)

    reader = tf.TextLineReader()
    key, value = reader.read(filename_queue)
    image_path, label_str = tf.decode_csv(value, record_defaults=[[''], ['']], field_delim=' ')

    if prepare_path:
        image_abspath = IMAGENET_ROOT + '/images/' + subset + image_path
    else:
        image_abspath = image_path

    image_content = tf.read_file(image_abspath)
    image = decode_image(image_content, channels=3)
    image.set_shape([None, None, 3])

    imgshape = tf.shape(image)[:2]
    label = tf.string_to_number(label_str, out_type=tf.int32)

    return image, label, imgshape, image_path 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:26,代碼來源:datasets.py

示例3: testToInt32

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def testToInt32(self):
    with self.test_session():
      input_string = tf.placeholder(tf.string)
      output = tf.string_to_number(
          input_string,
          out_type=tf.int32)

      result = output.eval(feed_dict={
          input_string: ["0", "3", "-1", "    -10", "-2147483648", "2147483647"]
      })

      self.assertAllEqual([0, 3, -1, -10, -2147483648, 2147483647], result)

      with self.assertRaisesOpError(_ERROR_MESSAGE + "2.9"):
        output.eval(feed_dict={input_string: ["2.9"]})

      # The next two exceed maximum value of int32.
      for in_string in ["-2147483649", "2147483648"]:
        with self.assertRaisesOpError(_ERROR_MESSAGE + in_string):
          output.eval(feed_dict={input_string: [in_string]}) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:string_to_number_op_test.py

示例4: read_image_and_label

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def read_image_and_label(image_label_q):
    # Returns three Tensors: the decoded PNG image, the hour, and the minute.
    filename, hour_str, minute_str = tf.decode_csv(
        image_label_q.dequeue(), [[""], [""], [""]], " ")
    file_contents = tf.read_file(filename)

    # Decode image from PNG, and cast it to a float.
    example = tf.image.decode_png(file_contents, channels=image_channels)
    image = tf.cast(example, tf.float32)

    # Set the tensor size manually from the image.
    image.set_shape([image_size, image_size, image_channels])

    # Do per-image whitening (zero mean, unit standard deviation). Without this,
    # the learning algorithm diverges almost immediately because the gradient is
    # too big.
    image = tf.image.per_image_whitening(image)

    # The label should be an integer.
    hour = tf.string_to_number(hour_str, out_type=tf.int32)
    minute = tf.string_to_number(minute_str, out_type=tf.int32)

    return image, hour, minute 
開發者ID:felixduvallet,項目名稱:deep-time-reading,代碼行數:25,代碼來源:clock_data.py

示例5: create_trg_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def create_trg_dataset(input_dataset,
                       input_data_type,
                       word_vocab_index,
                       word_max_length,
                       word_pad,
                       word_sos,
                       word_eos,
                       word_placeholder_enable,
                       num_parallel):
    """create dataset for input target data"""
    dataset = input_dataset
    
    if input_data_type == "span":
        dataset = dataset.map(lambda span: tf.string_split([span], delimiter='|').values, num_parallel_calls=num_parallel)
        dataset = dataset.map(lambda span: tf.string_to_number(span, out_type=tf.int32), num_parallel_calls=num_parallel)
        dataset = dataset.map(lambda span: tf.expand_dims(span, axis=-1), num_parallel_calls=num_parallel)
    elif input_data_type == "text":
        dataset = dataset.map(lambda sent: generate_word_feat(sent,
            word_vocab_index, word_max_length, word_pad, word_sos, word_eos,
            word_placeholder_enable), num_parallel_calls=num_parallel)
    
    return dataset 
開發者ID:stevezheng23,項目名稱:reading_comprehension_tf,代碼行數:24,代碼來源:data_util.py

示例6: test_dataset_map

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def test_dataset_map(self, input_queue):
        fname_1, fname_2, annotation_fname, samples_per_cat = input_queue[0],\
            input_queue[1], input_queue[2], input_queue[3]
        samples_per_cat = tf.string_to_number(samples_per_cat)
        file_content = tf.read_file(fname_1)
        image_1 = tf.image.decode_jpeg(file_content, channels=3)
        image_1 = self.preprocess_image(image_1)
        file_content = tf.read_file(fname_2)
        image_2 = tf.image.decode_jpeg(file_content, channels=3)
        image_2 = self.preprocess_image(image_2)
        file_content = tf.read_file(annotation_fname)
        seg_1 = tf.image.decode_jpeg(file_content, channels=1)
        seg_1 = self.preprocess_mask(seg_1)

        # Cropping preprocess
        image_1 = self.central_cropping(image_1, self.test_crop)
        image_2 = self.central_cropping(image_2, self.test_crop)
        seg_1 = self.central_cropping(seg_1, self.test_crop)

        return image_1, image_2, seg_1, fname_1, samples_per_cat 
開發者ID:antonilo,項目名稱:unsupervised_detection,代碼行數:22,代碼來源:fbms_data_utils.py

示例7: generator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def generator(ln):
    splits = tf.string_split([ln], delimiter=',')
    label = splits.values[0]
    # 解析 dense 部分
    features = {}
    for i in range(1, 14):
        features['I'+str(i)] = tf.string_to_number(splits.values[i], tf.int64)

    return features, label 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:11,代碼來源:2_adanet_avazu.py

示例8: _get_dataset_next

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def _get_dataset_next(self, files, config, batch_size):

    def decode_func(value):
      return [tf.string_to_number(value, out_type=tf.int32)]

    dataset = dataset_builder.read_dataset(tf.data.TextLineDataset, files,
                                           config)
    dataset = dataset.map(decode_func)
    dataset = dataset.batch(batch_size)
    return dataset.make_one_shot_iterator().get_next() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:12,代碼來源:dataset_builder_test.py

示例9: _get_dataset_next

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def _get_dataset_next(self, files, config, batch_size):
    def decode_func(value):
      return [tf.string_to_number(value, out_type=tf.int32)]

    dataset = dataset_util.read_dataset(
        tf.data.TextLineDataset, decode_func, files, config)
    dataset = dataset.batch(batch_size)
    return dataset.make_one_shot_iterator().get_next() 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:10,代碼來源:dataset_util_test.py

示例10: read

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def read(self, **data):
        return {k: tf.string_to_number(v, tf.float32) for k, v in data.items()} 
開發者ID:audi,項目名稱:nucleus7,代碼行數:4,代碼來源:model_dummies.py

示例11: test_StringToNumber

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def test_StringToNumber(self):
        t = tf.string_to_number(list("0123456789"))
        self.check(t)


    #
    # shapes and shaping
    # 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:10,代碼來源:ops.py

示例12: input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
    print('Parsing', filenames)
    def decode_libsvm(line):
        columns = tf.string_split([line], ' ')
        labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
        splits = tf.string_split(columns.values[1:], ':')
        id_vals = tf.reshape(splits.values,splits.dense_shape)
        feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
        feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
        feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
        return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

    # Extract lines from input files using the Dataset API, can pass one filename or filename list
    dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(1000)

    # Randomizes input using a window of 256 elements (read into memory)
    if perform_shuffle:
        dataset = dataset.shuffle(buffer_size=256)

    # epochs from blending together.
    dataset = dataset.repeat(num_epochs)
    dataset = dataset.batch(batch_size) # Batch size to use

    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    return batch_features, batch_labels 
開發者ID:gutouyu,項目名稱:ML_CIA,代碼行數:28,代碼來源:NFM.py

示例13: postproc_annotation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def postproc_annotation(self, ann_filename, ann):
    id_str = tf.string_split([ann_filename], ':').values[1]
    id_ = tf.string_to_number(id_str, out_type=tf.int32)
    ann_postproc = tf.cast(tf.equal(tf.cast(ann, tf.int32), id_), tf.uint8)
    return ann_postproc 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:7,代碼來源:MapillaryLike_instance.py

示例14: testToFloat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def testToFloat(self):
    with self.test_session():
      input_string = tf.placeholder(tf.string)
      output = tf.string_to_number(
          input_string,
          out_type=tf.float32)

      result = output.eval(feed_dict={
          input_string: ["0",
                         "3",
                         "-1",
                         "1.12",
                         "0xF",
                         "   -10.5",
                         "3.40282e+38",
                         # The next two exceed maximum value for float, so we
                         # expect +/-INF to be returned instead.
                         "3.40283e+38",
                         "-3.40283e+38",
                         "NAN",
                         "INF"]
      })

      self.assertAllClose([0, 3, -1, 1.12, 0xF, -10.5, 3.40282e+38,
                           float("INF"), float("-INF"), float("NAN"),
                           float("INF")], result)

      with self.assertRaisesOpError(_ERROR_MESSAGE + "10foobar"):
        output.eval(feed_dict={input_string: ["10foobar"]}) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:31,代碼來源:string_to_number_op_test.py

示例15: provide_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_number [as 別名]
def provide_data(self):
        def decode(line):
            fields = tf.string_split([line], self.field_delim).values
            if self.index:  # Skip index
                fields = fields[1:]
            fields = tf.regex_replace(fields, "|".join(self.na_values), "nan")
            fields = tf.string_to_number(fields, tf.float32)
            return fields

        def fill_na(fields, fill_values):
            fields = tf.where(tf.is_nan(fields), fill_values, fields)
            return fields

        dataset = tf.data.TextLineDataset(self.local_data_file)
        if self.header:  # Skip header
            dataset = dataset.skip(1)
        dataset = (
            dataset.map(decode)
            .map(lambda x: fill_na(x, self.data_schema.field_defaults))
            .repeat()
            .batch(self.batch_size)
        )

        iterator = dataset.make_one_shot_iterator()
        batch = iterator.get_next()
        batch = tf.reshape(batch, [self.batch_size, self.data_schema.field_num])
        return batch 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:29,代碼來源:logistic_regression.py


注:本文中的tensorflow.string_to_number方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。