本文整理匯總了Python中tensorflow.string_to_hash_bucket_fast方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.string_to_hash_bucket_fast方法的具體用法?Python tensorflow.string_to_hash_bucket_fast怎麽用?Python tensorflow.string_to_hash_bucket_fast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.string_to_hash_bucket_fast方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_features_dict
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def _get_features_dict(input_dict):
"""Extracts features dict from input dict."""
source_id = _replace_empty_string_with_random_number(
input_dict[fields.InputDataFields.source_id])
hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
features = {
fields.InputDataFields.image:
input_dict[fields.InputDataFields.image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
fields.InputDataFields.true_image_shape:
input_dict[fields.InputDataFields.true_image_shape],
fields.InputDataFields.original_image_spatial_shape:
input_dict[fields.InputDataFields.original_image_spatial_shape]
}
if fields.InputDataFields.original_image in input_dict:
features[fields.InputDataFields.original_image] = input_dict[
fields.InputDataFields.original_image]
return features
示例2: _instruction
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def _instruction(self, instruction):
# Split string.
splitted = tf.string_split(instruction)
dense = tf.sparse_tensor_to_dense(splitted, default_value='')
length = tf.reduce_sum(tf.to_int32(tf.not_equal(dense, '')), axis=1)
# To int64 hash buckets. Small risk of having collisions. Alternatively, a
# vocabulary can be used.
num_hash_buckets = 1000
buckets = tf.string_to_hash_bucket_fast(dense, num_hash_buckets)
# Embed the instruction. Embedding size 20 seems to be enough.
embedding_size = 20
embedding = snt.Embed(num_hash_buckets, embedding_size)(buckets)
# Pad to make sure there is at least one output.
padding = tf.to_int32(tf.equal(tf.shape(embedding)[1], 0))
embedding = tf.pad(embedding, [[0, 0], [0, padding], [0, 0]])
core = tf.contrib.rnn.LSTMBlockCell(64, name='language_lstm')
output, _ = tf.nn.dynamic_rnn(core, embedding, length, dtype=tf.float32)
# Return last output.
return tf.reverse_sequence(output, length, seq_axis=1)[:, 0]
示例3: _graph_fn_call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def _graph_fn_call(self, text_inputs):
"""
Args:
text_inputs (SingleDataOp): The Text input to generate a hash bucket for.
Returns:
tuple:
- SingleDataOp: The hash lookup table (int64) that can be used as input to embedding-lookups.
- SingleDataOp: The length (number of words) of the longest string in the `text_input` batch.
"""
if get_backend() == "tf":
# Split the input string.
split_text_inputs = tf.string_split(source=text_inputs, delimiter=self.delimiter)
# Build a tensor of n rows (number of items in text_inputs) words with
dense = tf.sparse_tensor_to_dense(sp_input=split_text_inputs, default_value="")
length = tf.reduce_sum(input_tensor=tf.cast(x=tf.not_equal(x=dense, y=""), dtype=tf.int32), axis=-1)
if self.hash_function == "fast":
hash_bucket = tf.string_to_hash_bucket_fast(input=dense, num_buckets=self.num_hash_buckets)
else:
hash_bucket = tf.string_to_hash_bucket_strong(input=dense,
num_buckets=self.num_hash_buckets,
key=self.hash_keys)
# Int64 is tf's default for `string_to_hash_bucket` operation: Can leave as is.
if self.dtype != "int64":
hash_bucket = tf.cast(x=hash_bucket, dtype=dtype_(self.dtype))
# Hash-bucket output is always batch-major.
hash_bucket._batch_rank = 0
hash_bucket._time_rank = 1
return hash_bucket, length
示例4: _get_features_dict
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def _get_features_dict(input_dict):
"""Extracts features dict from input dict."""
hash_from_source_id = tf.string_to_hash_bucket_fast(
input_dict[fields.InputDataFields.source_id], HASH_BINS)
features = {
fields.InputDataFields.image:
input_dict[fields.InputDataFields.image],
HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
fields.InputDataFields.true_image_shape:
input_dict[fields.InputDataFields.true_image_shape]
}
if fields.InputDataFields.original_image in input_dict:
features[fields.InputDataFields.original_image] = input_dict[
fields.InputDataFields.original_image]
return features
示例5: hash_float
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def hash_float(x, big_num=1000 * 1000):
"""Hash a tensor 'x' into a floating point number in the range [0, 1)."""
return tf.cast(
tf.string_to_hash_bucket_fast(x, big_num), tf.float32
) / tf.constant(float(big_num))
示例6: testStringToOneHashBucketFast
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def testStringToOneHashBucketFast(self):
with self.test_session():
input_string = tf.placeholder(tf.string)
output = tf.string_to_hash_bucket_fast(input_string, 1)
result = output.eval(feed_dict={input_string: ['a', 'b', 'c']})
self.assertAllEqual([0, 0, 0], result)
示例7: testStringToHashBucketsFast
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def testStringToHashBucketsFast(self):
with self.test_session():
input_string = tf.placeholder(tf.string)
output = tf.string_to_hash_bucket_fast(input_string, 10)
result = output.eval(feed_dict={input_string: ['a', 'b', 'c', 'd']})
# Fingerprint64('a') -> 12917804110809363939 -> mod 10 -> 9
# Fingerprint64('b') -> 11795596070477164822 -> mod 10 -> 2
# Fingerprint64('c') -> 11430444447143000872 -> mod 10 -> 2
# Fingerprint64('d') -> 4470636696479570465 -> mod 10 -> 5
self.assertAllEqual([9, 2, 2, 5], result)
示例8: hash_in_range
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def hash_in_range(self, buckets, base, limit):
"""Return true if the hashed id falls in the range [base, limit)."""
hash_bucket = tf.string_to_hash_bucket_fast(self.id, buckets)
return tf.logical_and(
tf.greater_equal(hash_bucket, base), tf.less(hash_bucket, limit))
示例9: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_to_hash_bucket_fast [as 別名]
def call(self, x, mask=None, **kwargs):
if x.dtype != tf.string:
x = tf.as_string(x, )
try:
hash_x = tf.string_to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1,
name=None) # weak hash
except:
hash_x = tf.strings.to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1,
name=None) # weak hash
if self.mask_zero:
mask_1 = tf.cast(tf.not_equal(x, "0"), 'int64')
mask_2 = tf.cast(tf.not_equal(x, "0.0"), 'int64')
mask = mask_1 * mask_2
hash_x = (hash_x + 1) * mask
return hash_x