本文整理匯總了Python中tensorflow.string_join方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.string_join方法的具體用法?Python tensorflow.string_join怎麽用?Python tensorflow.string_join使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.string_join方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testStringJoin
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def testStringJoin(self):
input0 = ["a", "b"]
input1 = "a"
input2 = [["b"], ["c"]]
with self.test_session():
output = tf.string_join([input0, input1])
self.assertAllEqual(output.eval(), [b"aa", b"ba"])
output = tf.string_join([input0, input1], separator="--")
self.assertAllEqual(output.eval(), [b"a--a", b"b--a"])
output = tf.string_join([input0, input1, input0], separator="--")
self.assertAllEqual(output.eval(), [b"a--a--a", b"b--a--b"])
output = tf.string_join([input1] * 4, separator="!")
self.assertEqual(output.eval(), b"a!a!a!a")
output = tf.string_join([input2] * 2, separator="")
self.assertAllEqual(output.eval(), [[b"bb"], [b"cc"]])
with self.assertRaises(ValueError): # Inconsistent shapes
tf.string_join([input0, input2]).eval()
示例2: read_and_decode_ppm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def read_and_decode_ppm(self, filename_queue):
def read_ppm(self, filename):
img = misc.imread(filename).astype('float32')
return img
flying_h = 384
flying_w = 512
img1_name = tf.string_join([self.img_dir, '/', filename_queue[0]])
img2_name = tf.string_join([self.img_dir, '/', filename_queue[1]])
img1 = tf.py_func(read_ppm, [img1_name], tf.float32)
img2 = tf.py_func(read_ppm, [img2_name], tf.float32)
img1 = tf.reshape(img1, [flying_h, flying_w, 3])
img2 = tf.reshape(img2, [flying_h, flying_w, 3])
return img1, img2
示例3: read_and_decode_distillation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def read_and_decode_distillation(self, filename_queue):
img1_name = tf.string_join([self.img_dir, '/', filename_queue[0]])
img2_name = tf.string_join([self.img_dir, '/', filename_queue[1]])
img1 = tf.image.decode_png(tf.read_file(img1_name), channels=3)
img1 = tf.cast(img1, tf.float32)
img2 = tf.image.decode_png(tf.read_file(img2_name), channels=3)
img2 = tf.cast(img2, tf.float32)
flow_occ_fw_name = tf.string_join([self.fake_flow_occ_dir, '/flow_occ_fw_', filename_queue[2], '.png'])
flow_occ_bw_name = tf.string_join([self.fake_flow_occ_dir, '/flow_occ_bw_', filename_queue[2], '.png'])
flow_occ_fw = tf.image.decode_png(tf.read_file(flow_occ_fw_name), dtype=tf.uint16, channels=3)
flow_occ_fw = tf.cast(flow_occ_fw, tf.float32)
flow_occ_bw = tf.image.decode_png(tf.read_file(flow_occ_bw_name), dtype=tf.uint16, channels=3)
flow_occ_bw = tf.cast(flow_occ_bw, tf.float32)
flow_fw, occ_fw = self.extract_flow_and_mask(flow_occ_fw)
flow_bw, occ_bw = self.extract_flow_and_mask(flow_occ_bw)
return img1, img2, flow_fw, flow_bw, occ_fw, occ_bw
示例4: expand_path
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def expand_path(self, sample):
""" Expands audio paths for the given sample. """
return dict(sample, **{f'{instrument}_path': tf.string_join(
(self._audio_path, sample[f'{instrument}_path']), SEPARATOR)
for instrument in self._instruments})
示例5: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def __init__(self, config, batch_size, one_hot=False):
self.lookup = None
reader = tf.TextLineReader()
filename_queue = tf.train.string_input_producer(["chargan.txt"])
key, x = reader.read(filename_queue)
vocabulary = self.get_vocabulary()
table = tf.contrib.lookup.string_to_index_table_from_tensor(
mapping = vocabulary, default_value = 0)
x = tf.string_join([x, tf.constant(" " * 64)])
x = tf.substr(x, [0], [64])
x = tf.string_split(x,delimiter='')
x = tf.sparse_tensor_to_dense(x, default_value=' ')
x = tf.reshape(x, [64])
x = table.lookup(x)
self.one_hot = one_hot
if one_hot:
x = tf.one_hot(x, len(vocabulary))
x = tf.cast(x, dtype=tf.float32)
x = tf.reshape(x, [1, int(x.get_shape()[0]), int(x.get_shape()[1]), 1])
else:
x = tf.cast(x, dtype=tf.float32)
x -= len(vocabulary)/2.0
x /= len(vocabulary)/2.0
x = tf.reshape(x, [1,1, 64, 1])
num_preprocess_threads = 8
x = tf.train.shuffle_batch(
[x],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity= 5000,
min_after_dequeue=500,
enqueue_many=True)
self.x = x
self.table = table
示例6: build_row_key_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def build_row_key_dataset(num_records, row_prefix):
if num_records is not None:
ds = tf.data.Dataset.range(num_records)
else:
ds = tf.contrib.data.Counter()
if num_records is None:
width = 10
else:
width = pad_width(num_records)
ds = ds.map(lambda idx: tf.as_string(idx, width=width, fill='0'))
if row_prefix is not None:
ds = ds.map(lambda idx: tf.string_join([row_prefix, idx]))
return ds
示例7: testStateSaverScopeNames
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def testStateSaverScopeNames(self):
batch_size = tf.constant(2)
sqss_scope_name = "unique_scope_name_for_sqss"
num_unroll = 2
length = 3
key = tf.string_join(["key_", tf.as_string(tf.cast(
10000 * tf.random_uniform(()), tf.int32))])
padded_length = 4
sequences = {"seq1": np.random.rand(padded_length, 5),
"seq2": np.random.rand(padded_length, 4, 2)}
context = {"context1": [3, 4]}
initial_states = {"state1": np.random.rand(6, 7),
"state2": np.random.rand(8)}
state_saver = tf.contrib.training.SequenceQueueingStateSaver(
batch_size=batch_size,
num_unroll=num_unroll,
input_length=length,
input_key=key,
input_sequences=sequences,
input_context=context,
initial_states=initial_states,
name=sqss_scope_name)
prefetch_op = state_saver.prefetch_op
next_batch = state_saver.next_batch
self.assertTrue(state_saver.barrier.barrier_ref.name.startswith(
"%s/" % sqss_scope_name))
self.assertTrue(prefetch_op.name.startswith("%s/" % sqss_scope_name))
self.assertTrue(next_batch.key.name.startswith("%s/" % sqss_scope_name))
示例8: setUp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def setUp(self):
super(BatchSequencesWithStatesTest, self).setUp()
self.value_length = 4
self.batch_size = 2
self.key = tf.string_join(["key_", tf.as_string(tf.cast(
10000 * tf.random_uniform(()), tf.int32))])
self.sequences = {"seq1": np.random.rand(self.value_length, 5),
"seq2": np.random.rand(self.value_length, 4, 2)}
self.context = {"context1": [3, 4]}
self.initial_states = {"state1": np.random.rand(6, 7),
"state2": np.random.rand(8)}
示例9: clip_to_waveform
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def clip_to_waveform(clip, clip_dir=None):
"""Decodes a WAV clip into a waveform tensor."""
# Decode the WAV-format clip into a waveform tensor where
# the values lie in [-1, +1].
clip_path = tf.string_join([clip_dir, clip], separator=os.sep)
clip_data = tf.read_file(clip_path)
waveform, sr = tf_audio.decode_wav(clip_data)
#waveform = tf.Print(waveform, [tf.shape(waveform), waveform], message='Waveform:', summarize=100)
# Assert that the clip has the expected sample rate.
check_sr = tf.assert_equal(sr, SAMPLE_RATE)
# and that it is mono.
check_channels = tf.assert_equal(tf.shape(waveform)[1], 1)
with tf.control_dependencies([tf.group(check_sr, check_channels)]):
return tf.squeeze(waveform)
示例10: read_and_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def read_and_decode(self, filename_queue):
img0_name = tf.string_join([self.img_dir, '/', filename_queue[0]])
img1_name = tf.string_join([self.img_dir, '/', filename_queue[1]])
img2_name = tf.string_join([self.img_dir, '/', filename_queue[2]])
img0 = tf.image.decode_png(tf.read_file(img0_name), channels=3)
img0 = tf.cast(img0, tf.float32)
img1 = tf.image.decode_png(tf.read_file(img1_name), channels=3)
img1 = tf.cast(img1, tf.float32)
img2 = tf.image.decode_png(tf.read_file(img2_name), channels=3)
img2 = tf.cast(img2, tf.float32)
return img0, img1, img2
# For Validation or Testing
示例11: _parse_string_line
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def _parse_string_line(string_line, root_path):
"""
解析文本中的一行字符串行,得到圖片路徑(拚接圖片根目錄)和標簽
:param string_line: 文本中的一行字符串,image_name label0 label1 label2 label3 ...
:param root_path: 圖片根目錄
:return: DatasetV1Adapter<(圖片路徑Tensor(shape=(), dtype=string),標簽Tensor(shape=(?,), dtype=float32))>
"""
strings = tf.string_split([string_line], delimiter=' ').values
image_path = tf.string_join([root_path, strings[0]], separator=os.sep)
labels = tf.string_to_number(strings[1:])
return image_path, labels
示例12: read_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def read_image(im):
"""Reads an image."""
filename = tf.string_join([FLAGS.data_dir, im])
image = tf.read_file(filename)
image = tf.image.decode_jpeg(image, 3)
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize_images(image, [346, 346])
image = image[23:-24, 23:-24]
image = image * 2 - 1
return image
示例13: add_distance_transform
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def add_distance_transform(tensors, labels, distance_transform_fn):
args_list = [tensors["unnormalized_img"], tensors["label"],
tensors["raw_label"], labels[Constants.STRATEGY], labels[Constants.IGNORE_CLASSES]]
if "old_label" in tensors:
args_list.append(tensors["old_label"])
u0, u1, num_clicks = tf.py_func(distance_transform_fn,
args_list,
[tf.float32, tf.float32, tf.int64],
name="create_distance_transform")
u0 = tf.expand_dims(u0, axis=2)
u0.set_shape(tensors["unnormalized_img"].get_shape().as_list()[:-1] + [1])
u1 = tf.expand_dims(u1, axis=2)
u1.set_shape(tensors["unnormalized_img"].get_shape().as_list()[:-1] + [1])
shape = tensors["tag"].get_shape()
im_path = tf.string_join([tensors["tag"], tf.as_string(num_clicks)], separator=":", name="JoinPath")
im_path.set_shape(shape)
tensors[Constants.DT_NEG] = u0
tensors[Constants.DT_POS] = u1
tensors["tag"] = im_path
return tensors
示例14: make_status_message
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def make_status_message(model):
"""Makes a string `Tensor` of training status."""
return tf.string_join(
[
'Starting train step: current_image_id: ',
tf.as_string(model.current_image_id), ', progress: ',
tf.as_string(model.progress), ', num_blocks: {}'.format(
model.num_blocks), ', batch_size: {}'.format(model.batch_size)
],
name='status_message')
示例15: body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string_join [as 別名]
def body(self, pc, tape, cur, jumps, output):
token = self.tokens[pc]
inc_pc = tf.add(pc, 1)
def stdin(c):
#return tf.assign(self.tape[c], input(''))
return self.tape
return tf.cond(tf.equal(token, '+'),
lambda: (inc_pc, tf.assign(self.tape[cur], self.tape[cur]+1), cur, jumps, output),
lambda: tf.cond(tf.equal(token, '-'),
lambda: (inc_pc, tf.assign(self.tape[cur], self.tape[cur]-1), cur, jumps, output),
lambda: tf.cond(tf.equal(token, '>'),
lambda: (inc_pc, tape, tf.add(cur, 1), jumps, output),
lambda: tf.cond(tf.equal(token, '<'),
lambda: (inc_pc, tape, tf.subtract(cur, 1), jumps, output),
lambda: tf.cond(tf.equal(token, '.'),
lambda: (inc_pc, tape, cur, jumps, tf.string_join([output, ascii2char(tape[cur])])),
lambda: tf.cond(tf.equal(token, ','),
lambda: (inc_pc, stdin(cur), cur, jumps, output),
lambda: tf.cond(tf.equal(token, '['),
lambda: tf.cond(tf.equal(self.tape[cur], 0),
lambda: (jumps[pc], tape, cur, jumps, output),
lambda: (inc_pc, tape, cur, jumps, output)),
lambda: tf.cond(tf.equal(token, ']'),
lambda: tf.cond(tf.not_equal(self.tape[cur], 0),
lambda: (jumps[pc], tape, cur, jumps, output),
lambda: (inc_pc, tape, cur, jumps, output)),
lambda: (inc_pc, tape, cur, jumps, output) ))))))))