當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.string方法代碼示例

本文整理匯總了Python中tensorflow.string方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.string方法的具體用法?Python tensorflow.string怎麽用?Python tensorflow.string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _mapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _mapper(example_proto):
  features = {
      'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
      'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
  }
  example = tf.parse_single_example(example_proto, features)

  wav = example['samples'][:, 0]

  wav = wav[:16384]
  wav_len = tf.shape(wav)[0]
  wav = tf.pad(wav, [[0, 16384 - wav_len]])

  label = tf.reduce_join(example['label'], 0)

  return wav, label 
開發者ID:acheketa,項目名稱:cwavegan,代碼行數:18,代碼來源:dump_tfrecord.py

示例2: read_from_tfrecord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:18_basic_tfrecord.py

示例3: testSimple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def testSimple(self):
    labels = [9, 3, 0]
    records = [self._record(labels[0], 0, 128, 255),
               self._record(labels[1], 255, 0, 1),
               self._record(labels[2], 254, 255, 0)]
    contents = b"".join([record for record, _ in records])
    expected = [expected for _, expected in records]
    filename = os.path.join(self.get_temp_dir(), "cifar")
    open(filename, "wb").write(contents)

    with self.test_session() as sess:
      q = tf.FIFOQueue(99, [tf.string], shapes=())
      q.enqueue([filename]).run()
      q.close().run()
      result = cifar10_input.read_cifar10(q)

      for i in range(3):
        key, label, uint8image = sess.run([
            result.key, result.label, result.uint8image])
        self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
        self.assertEqual(labels[i], label)
        self.assertAllEqual(expected[i], uint8image)

      with self.assertRaises(tf.errors.OutOfRangeError):
        sess.run([result.key, result.uint8image]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:cifar10_input_test.py

示例4: _ImageProcessing

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _ImageProcessing(image_buffer, shape):
  """Convert a PNG string into an input tensor.

  We allow for fixed and variable sizes.
  Does fixed conversion to floats in the range [-1.28, 1.27].
  Args:
    image_buffer: Tensor containing a PNG encoded image.
    shape:          ImageShape with the desired shape of the input.
  Returns:
    image:        Decoded, normalized image in the range [-1.28, 1.27].
  """
  image = tf.image.decode_png(image_buffer, channels=shape.depth)
  image.set_shape([shape.height, shape.width, shape.depth])
  image = tf.cast(image, tf.float32)
  image = tf.subtract(image, 128.0)
  image = tf.multiply(image, 1 / 100.0)
  return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:vgsl_input.py

示例5: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that converts CMYK JPEG data to RGB JPEG data.
    self._cmyk_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
    self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:build_imagenet_data.py

示例6: _find_human_readable_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _find_human_readable_labels(synsets, synset_to_human):
  """Build a list of human-readable labels.

  Args:
    synsets: list of strings; each string is a unique WordNet ID.
    synset_to_human: dict of synset to human labels, e.g.,
      'n02119022' --> 'red fox, Vulpes vulpes'

  Returns:
    List of human-readable strings corresponding to each synset.
  """
  humans = []
  for s in synsets:
    assert s in synset_to_human, ('Failed to find: %s' % s)
    humans.append(synset_to_human[s])
  return humans 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:build_imagenet_data.py

示例7: _find_image_bounding_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _find_image_bounding_boxes(filenames, image_to_bboxes):
  """Find the bounding boxes for a given image file.

  Args:
    filenames: list of strings; each string is a path to an image file.
    image_to_bboxes: dictionary mapping image file names to a list of
      bounding boxes. This list contains 0+ bounding boxes.
  Returns:
    List of bounding boxes for each image. Note that each entry in this
    list might contain from 0+ entries corresponding to the number of bounding
    box annotations for the image.
  """
  num_image_bbox = 0
  bboxes = []
  for f in filenames:
    basename = os.path.basename(f)
    if basename in image_to_bboxes:
      bboxes.append(image_to_bboxes[basename])
      num_image_bbox += 1
    else:
      bboxes.append([])
  print('Found %d images with bboxes out of %d images' % (
      num_image_bbox, len(filenames)))
  return bboxes 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:build_imagenet_data.py

示例8: _process_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _process_dataset(name, directory, num_shards, synset_to_human,
                     image_to_bboxes):
  """Process a complete data set and save it as a TFRecord.

  Args:
    name: string, unique identifier specifying the data set.
    directory: string, root path to the data set.
    num_shards: integer number of shards for this data set.
    synset_to_human: dict of synset to human labels, e.g.,
      'n02119022' --> 'red fox, Vulpes vulpes'
    image_to_bboxes: dictionary mapping image file names to a list of
      bounding boxes. This list contains 0+ bounding boxes.
  """
  filenames, synsets, labels = _find_image_files(directory, FLAGS.labels_file)
  humans = _find_human_readable_labels(synsets, synset_to_human)
  bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes)
  _process_image_files(name, filenames, synsets, labels,
                       humans, bboxes, num_shards) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:build_imagenet_data.py

示例9: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def decode_jpeg(image_buffer, scope=None):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for name_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  with tf.name_scope(values=[image_buffer], name=scope,
                     default_name='decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3)

    # After this point, all image pixels reside in [0,1)
    # until the very end, when they're rescaled to (-1, 1).  The various
    # adjust_* ops all require this range for dtype float.
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:image_processing.py

示例10: read_and_decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.reshape(image, [227, 227, 6])

  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    return tf.split(image, 2, 2) # 3rd dimension two parts 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:18,代碼來源:vfn_train.py

示例11: read_and_decode_aug

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def read_and_decode_aug(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    image = tf.image.random_brightness(image, 0.01)
    image = tf.image.random_contrast(image, 0.95, 1.05)
    return tf.split(image, 2, 2) # 3rd dimension two parts 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:19,代碼來源:vfn_train.py

示例12: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def example_reading_spec(self):
    extra_data_fields, extra_data_items_to_decoders = self.extra_reading_spec

    data_fields = {
        "image/encoded": tf.FixedLenFeature((), tf.string),
        "image/format": tf.FixedLenFeature((), tf.string),
    }
    data_fields.update(extra_data_fields)

    data_items_to_decoders = {
        "frame":
            tf.contrib.slim.tfexample_decoder.Image(
                image_key="image/encoded",
                format_key="image/format",
                shape=[self.frame_height, self.frame_width, self.num_channels],
                channels=self.num_channels),
    }
    data_items_to_decoders.update(extra_data_items_to_decoders)

    return data_fields, data_items_to_decoders 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:video_utils.py

示例13: serving_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def serving_input_fn(self, hparams):
    """Input fn for serving export, starting from serialized example."""
    mode = tf.estimator.ModeKeys.PREDICT
    serialized_example = tf.placeholder(
        dtype=tf.string, shape=[None], name="serialized_example")
    dataset = tf.data.Dataset.from_tensor_slices(serialized_example)
    dataset = dataset.map(self.decode_example)
    dataset = dataset.map(lambda ex: self.preprocess_example(ex, mode, hparams))
    dataset = dataset.map(self.maybe_reverse_and_copy)
    dataset = dataset.map(data_reader.cast_ints_to_int32)
    dataset = dataset.padded_batch(
        tf.shape(serialized_example, out_type=tf.int64)[0],
        dataset.output_shapes)
    dataset = dataset.map(standardize_shapes)
    features = tf.contrib.data.get_single_element(dataset)

    if self.has_inputs:
      features.pop("targets", None)

    return tf.estimator.export.ServingInputReceiver(
        features=features, receiver_tensors=serialized_example) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:problem.py

示例14: parse_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def parse_fn(self, serialized_example):
        features={
            'image/id_name': tf.FixedLenFeature([], tf.string),
            'image/height' : tf.FixedLenFeature([], tf.int64),
            'image/width'  : tf.FixedLenFeature([], tf.int64),
            'image/encoded': tf.FixedLenFeature([], tf.string),
        }
        for name in self.feature_list:
            features[name] = tf.FixedLenFeature([], tf.int64)

        example = tf.parse_single_example(serialized_example, features=features)
        image = tf.decode_raw(example['image/encoded'], tf.uint8)
        raw_height = tf.cast(example['image/height'], tf.int32)
        raw_width = tf.cast(example['image/width'], tf.int32)
        image = tf.reshape(image, [raw_height, raw_width, 3])
        image = tf.image.resize_images(image, size=[self.height, self.width])
        # from IPython import embed; embed(); exit()

        feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list]
        return image, feature_val_list 
開發者ID:Prinsphield,項目名稱:DNA-GAN,代碼行數:22,代碼來源:dataset.py

示例15: _tf_example_input_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import string [as 別名]
def _tf_example_input_placeholder():
  """Returns input that accepts a batch of strings with tf examples.

  Returns:
    a tuple of input placeholder and the output decoded images.
  """
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
    return image_tensor
  return (batch_tf_example_placeholder,
          shape_utils.static_or_dynamic_map_fn(
              decode,
              elems=batch_tf_example_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:22,代碼來源:exporter.py


注:本文中的tensorflow.string方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。