本文整理匯總了Python中tensorflow.strided_slice方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.strided_slice方法的具體用法?Python tensorflow.strided_slice怎麽用?Python tensorflow.strided_slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.strided_slice方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def read(self, filename_queue):
data, label = read_tfrecord(
filename_queue,
{'nodes': [-1, self._grapher.num_node_channels],
'neighborhood': [self._num_nodes, self._neighborhood_size]})
nodes = data['nodes']
# Convert the neighborhood to a feature map.
def _map_features(node):
i = tf.maximum(node, 0)
positive = tf.strided_slice(nodes, [i], [i+1], [1])
negative = tf.zeros([1, self._grapher.num_node_channels])
return tf.where(i < 0, negative, positive)
data = tf.reshape(data['neighborhood'], [-1])
data = tf.cast(data, tf.int32)
data = tf.map_fn(_map_features, data, dtype=tf.float32)
shape = [self._num_nodes, self._neighborhood_size,
self._grapher.num_node_channels]
data = tf.reshape(data, shape)
return Record(data, shape, label)
示例2: node_sequence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def node_sequence(sequence, width, stride):
"""Normalizes a given sequence to have a fixed width by striding over the
sequence. The returned sequence is padded with -1 if its length is lower
than the requested width.
Args:
sequence: A 1d tensor.
width: The length of the returned sequence.
stride: The distance between two selected nodes.
Returns:
A 1d tensor.
"""
with tf.name_scope('node_sequence', values=[sequence, width, stride]):
# Stride the sequence based on the given stride size.
sequence = tf.strided_slice(sequence, [0], [width*stride], [stride])
# Pad right with -1 if the sequence length is lower than width.
padding = tf.ones([width - tf.shape(sequence)[0]], dtype=tf.int32)
padding = tf.negative(padding)
sequence = tf.concat(0, [sequence, padding])
return sequence
示例3: embedding_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def embedding_layer(self):
with tf.name_scope("word_embeddings"):
self.encoder_embeddings = tf.Variable(
initial_value=np.array(self.encoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
self.enc_embed_input = tf.nn.embedding_lookup(self.encoder_embeddings, self.input_data)
# self.enc_embed_input = tf.nn.dropout(self.enc_embed_input, keep_prob=self.keep_prob)
with tf.name_scope("decoder_inputs"):
self.decoder_embeddings = tf.Variable(
initial_value=np.array(self.decoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
keep = tf.where(
tf.random_uniform([self.batch_size, self.decoder_num_tokens]) < self.word_dropout_keep_prob,
tf.fill([self.batch_size, self.decoder_num_tokens], True),
tf.fill([self.batch_size, self.decoder_num_tokens], False))
ending = tf.cast(keep, dtype=tf.int32) * self.target_data
ending = tf.strided_slice(ending, [0, 0], [self.batch_size, -1], [1, 1],
name='slice_input') # Minus 1 implies everything till the last dim
self.dec_input = tf.concat([tf.fill([self.batch_size, 1], self.decoder_word_index['GO']), ending], 1,
name='dec_input')
self.dec_embed_input = tf.nn.embedding_lookup(self.decoder_embeddings, self.dec_input)
# self.dec_embed_input = tf.nn.dropout(self.dec_embed_input, keep_prob=self.keep_prob)
示例4: embedding_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def embedding_layer(self):
with tf.name_scope("word_embeddings"):
self.encoder_embeddings = tf.Variable(
initial_value=np.array(self.encoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
self.enc_embed_input = tf.nn.embedding_lookup(self.encoder_embeddings, self.input_data)
# self.enc_embed_input = tf.nn.dropout(self.enc_embed_input, keep_prob=self.keep_prob)
with tf.name_scope("decoder_inputs"):
self.decoder_embeddings = tf.Variable(
initial_value=np.array(self.decoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
ending = tf.strided_slice(self.target_data, [0, 0], [self.batch_size, -1], [1, 1],
name='slice_input') # Minus 1 implies everything till the last dim
self.dec_input = tf.concat([tf.fill([self.batch_size, 1], self.decoder_word_index['GO']), ending], 1,
name='dec_input')
self.dec_embed_input = tf.nn.embedding_lookup(self.decoder_embeddings, self.dec_input)
# self.dec_embed_input = tf.nn.dropout(self.dec_embed_input, keep_prob=self.keep_prob)
示例5: embedding_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def embedding_layer(self):
with tf.name_scope("word_embeddings"):
self.encoder_embeddings = tf.Variable(
initial_value=np.array(self.encoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
self.enc_embed_input = tf.nn.embedding_lookup(self.encoder_embeddings, self.input_data)
# self.enc_embed_input = tf.nn.dropout(self.enc_embed_input, keep_prob=self.keep_prob)
with tf.name_scope("decoder_inputs"):
self.decoder_embeddings = tf.Variable(
initial_value=np.array(self.decoder_embeddings_matrix, dtype=np.float32),
dtype=tf.float32, trainable=False)
keep = tf.where(
tf.random_uniform([self.batch_size, self.decoder_num_tokens]) < self.word_dropout_keep_prob,
tf.fill([self.batch_size, self.decoder_num_tokens], True),
tf.fill([self.batch_size, self.decoder_num_tokens], False))
ending = tf.cast(keep, dtype=tf.int32) * self.target_data
ending = tf.strided_slice(ending, [0, 0], [self.batch_size, -1], [1, 1],
name='slice_input') # Minus 1 implies everything till the last dim
self.dec_input = tf.concat([tf.fill([self.batch_size, 1], self.decoder_word_index['GO']), ending], 1,
name='dec_input')
self.dec_embed_input = tf.nn.embedding_lookup(self.decoder_embeddings, self.dec_input)
# self.dec_embed_input = tf.nn.dropout(self.dec_embed_input, keep_prob=self.keep_prob)
示例6: compute_voxel_group
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def compute_voxel_group(tensor, group_id):
"""Extracts voxel group group_id (1-indexed) from (3, 4, or 5-dim) tensor."""
assert group_id >= 1 and group_id <= 8
group_id -= 1
begin = [0, group_id / 4, group_id / 2 % 2, group_id % 2, 0]
stride = [1, 2, 2, 2, 1]
dim = len(tensor.shape)
if dim == 3:
begin = begin[1:4]
stride = stride[1:4]
elif dim == 4:
begin = begin[:-1]
stride = stride[:-1]
return tf.strided_slice(tensor, begin, tensor.shape, stride)
示例7: parser
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def parser(self, value):
"""Parse a Cifar10 record from value.
Output images are in [height, width, depth] layout.
"""
# Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
label_bytes = 1
image_bytes = HEIGHT * WIDTH * DEPTH
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
record_bytes = label_bytes + image_bytes
# Convert from a string to a vector of uint8 that is record_bytes long.
record_as_bytes = tf.decode_raw(value, tf.uint8)
# The first bytes represent the label, which we convert from
# uint8->int32.
label = tf.cast(
tf.strided_slice(record_as_bytes, [0], [label_bytes]), tf.int32)
label.set_shape([1])
# The remaining bytes after the label represent the image, which
# we reshape from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(
tf.strided_slice(record_as_bytes, [label_bytes], [record_bytes]),
[3, 32, 32])
# Convert from [depth, height, width] to [height, width, depth].
# This puts data in a compatible layout with TF image preprocessing APIs.
image = tf.transpose(depth_major, [1, 2, 0])
# Do custom preprocessing here.
image = self.preprocess(image)
return image, label
示例8: AddCrossEntropy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def AddCrossEntropy(batch_size, n):
"""Adds a cross entropy cost function."""
cross_entropies = []
def _Pass():
return tf.constant(0, dtype=tf.float32, shape=[1])
for beam_id in range(batch_size):
beam_gold_slot = tf.reshape(
tf.strided_slice(n['gold_slot'], [beam_id], [beam_id + 1]), [1])
def _ComputeCrossEntropy():
"""Adds ops to compute cross entropy of the gold path in a beam."""
# Requires a cast so that UnsortedSegmentSum, in the gradient,
# is happy with the type of its input 'segment_ids', which
# must be int32.
idx = tf.cast(
tf.reshape(
tf.where(tf.equal(n['beam_ids'], beam_id)), [-1]), tf.int32)
beam_scores = tf.reshape(tf.gather(n['all_path_scores'], idx), [1, -1])
num = tf.shape(idx)
return tf.nn.softmax_cross_entropy_with_logits(
labels=tf.expand_dims(
tf.sparse_to_dense(beam_gold_slot, num, [1.], 0.), 0),
logits=beam_scores)
# The conditional here is needed to deal with the last few batches of the
# corpus which can contain -1 in beam_gold_slot for empty batch slots.
cross_entropies.append(cf.cond(
beam_gold_slot[0] >= 0, _ComputeCrossEntropy, _Pass))
return {'cross_entropy': tf.div(tf.add_n(cross_entropies), batch_size)}
示例9: get_horizen_minAreaRectangle
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def get_horizen_minAreaRectangle(boxs, with_label=True):
rpn_proposals_boxes_convert = tf.py_func(forward_convert,
inp=[boxs, with_label],
Tout=tf.float32)
if with_label:
rpn_proposals_boxes_convert = tf.reshape(rpn_proposals_boxes_convert, [-1, 9])
boxes_shape = tf.shape(rpn_proposals_boxes_convert)
x_list = tf.strided_slice(rpn_proposals_boxes_convert, begin=[0, 0], end=[boxes_shape[0], boxes_shape[1] - 1],
strides=[1, 2])
y_list = tf.strided_slice(rpn_proposals_boxes_convert, begin=[0, 1], end=[boxes_shape[0], boxes_shape[1] - 1],
strides=[1, 2])
label = tf.unstack(rpn_proposals_boxes_convert, axis=1)[-1]
y_max = tf.reduce_max(y_list, axis=1)
y_min = tf.reduce_min(y_list, axis=1)
x_max = tf.reduce_max(x_list, axis=1)
x_min = tf.reduce_min(x_list, axis=1)
return tf.transpose(tf.stack([x_min, y_min, x_max, y_max, label], axis=0))
else:
rpn_proposals_boxes_convert = tf.reshape(rpn_proposals_boxes_convert, [-1, 8])
boxes_shape = tf.shape(rpn_proposals_boxes_convert)
x_list = tf.strided_slice(rpn_proposals_boxes_convert, begin=[0, 0], end=[boxes_shape[0], boxes_shape[1]],
strides=[1, 2])
y_list = tf.strided_slice(rpn_proposals_boxes_convert, begin=[0, 1], end=[boxes_shape[0], boxes_shape[1]],
strides=[1, 2])
y_max = tf.reduce_max(y_list, axis=1)
y_min = tf.reduce_min(y_list, axis=1)
x_max = tf.reduce_max(x_list, axis=1)
x_min = tf.reduce_min(x_list, axis=1)
return tf.transpose(tf.stack([x_min, y_min, x_max, y_max], axis=0))
示例10: local_flatten
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def local_flatten(x, kernel_size, name=None):
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
assert isinstance(kernel_size, tuple)
x = [[tf.strided_slice(x, (0, i, j), tf.shape(x)[:-1], (1,) + kernel_size)
for j in range(kernel_size[1])] for i in range(kernel_size[0])]
return tf.concat(reduce(lambda x, y: x + y, x), axis=-1, name=name)
示例11: ptb_input_producer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def ptb_input_producer(raw_data, batch_size, num_steps, shuffle=False,
randomize=False):
"""
Args:
raw_data: np tensor of size [num_words].
batch_size: self-explained.
num_steps: number of BPTT steps.
"""
num_batches_per_epoch = ((np.size(raw_data) // batch_size) - 1) // num_steps
raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0 : batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
with tf.device("/cpu:0"):
epoch_size = tf.identity(epoch_size, name="epoch_size")
if randomize:
i = tf.random_uniform([1], minval=0, maxval=batch_len - num_steps,
dtype=tf.int32)
i = tf.reduce_sum(i)
x = tf.strided_slice(
data, [0, i], [batch_size, i + num_steps])
y = tf.strided_slice(
data, [0, i + 1], [batch_size, i + num_steps + 1])
else:
i = tf.train.range_input_producer(epoch_size, shuffle=shuffle).dequeue()
x = tf.strided_slice(
data, [0, i * num_steps], [batch_size, (i + 1) * num_steps])
y = tf.strided_slice(
data, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1])
x.set_shape([batch_size, num_steps])
y.set_shape([batch_size, num_steps])
return x, y, num_batches_per_epoch
示例12: read
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def read(self, filename_queue):
"""Reads and parses examples from CIFAR-10 data files."""
# Read a record, getting filenames from the filename_queue. No header
# or footer in the CIFAR-10 format, so we leave header_bytes and
# footer_bytes at their default of 0.
reader = tf.FixedLengthRecordReader(record_bytes=RECORD_BYTES)
_, value = reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is RECORD_BYTES long.
record_bytes = tf.decode_raw(value, tf.uint8)
with tf.name_scope('read_label', values=[record_bytes]):
# The first bytes represent the label, which we convert from uint8
# to int64.
label = tf.strided_slice(record_bytes, [0], [LABEL_BYTES], [1])
label = tf.cast(label, tf.int64)
with tf.name_scope('read_image', values=[record_bytes]):
# The reamining bytes after the label represent the image, which we
# reshape from [depth * height * width] to [depth, height, width].
image = tf.strided_slice(
record_bytes, [LABEL_BYTES], [RECORD_BYTES], [1])
image = tf.reshape(image, [DEPTH, HEIGHT, WIDTH])
# Convert from [depth, height, width] to [height, width, depth].
image = tf.transpose(image, [1, 2, 0])
# Convert from uint8 to float32.
image = tf.cast(image, tf.float32)
return Record(image, [HEIGHT, WIDTH, DEPTH], label)
示例13: test_node_sequence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def test_node_sequence(self):
neighborhood = tf.constant([
[1, 0, 3, -1],
[2, 1, 0, -1],
])
nodes = tf.constant([
[0.5, 0.5, 0.5],
[1.5, 1.5, 1.5],
[2.5, 2.5, 2.5],
[3.5, 3.5, 3.5],
])
expected = [
[[1.5, 1.5, 1.5], [0.5, 0.5, 0.5], [3.5, 3.5, 3.5], [0, 0, 0]],
[[2.5, 2.5, 2.5], [1.5, 1.5, 1.5], [0.5, 0.5, 0.5], [0, 0, 0]],
]
def _map_features(node):
i = tf.maximum(node, 0)
positive = tf.strided_slice(nodes, [i], [i+1], [1])
negative = tf.zeros([1, 3])
return tf.where(node < 0, negative, positive)
with self.test_session() as sess:
data = tf.reshape(neighborhood, [-1])
data = tf.map_fn(_map_features, data, dtype=tf.float32)
data = tf.reshape(data, [2, 4, 3])
self.assertAllEqual(data.eval(), expected)
示例14: get_horizen_minAreaRectangle
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def get_horizen_minAreaRectangle(boxes, with_label=True):
if with_label:
boxes = tf.reshape(boxes, [-1, 9])
boxes_shape = tf.shape(boxes)
x_list = tf.strided_slice(boxes, begin=[0, 0], end=[boxes_shape[0], boxes_shape[1] - 1],
strides=[1, 2])
y_list = tf.strided_slice(boxes, begin=[0, 1], end=[boxes_shape[0], boxes_shape[1] - 1],
strides=[1, 2])
label = tf.unstack(boxes, axis=1)[-1]
y_max = tf.reduce_max(y_list, axis=1)
y_min = tf.reduce_min(y_list, axis=1)
x_max = tf.reduce_max(x_list, axis=1)
x_min = tf.reduce_min(x_list, axis=1)
return tf.transpose(tf.stack([x_min, y_min, x_max, y_max, label], axis=0))
else:
boxes = tf.reshape(boxes, [-1, 8])
boxes_shape = tf.shape(boxes)
x_list = tf.strided_slice(boxes, begin=[0, 0], end=[boxes_shape[0], boxes_shape[1]],
strides=[1, 2])
y_list = tf.strided_slice(boxes, begin=[0, 1], end=[boxes_shape[0], boxes_shape[1]],
strides=[1, 2])
y_max = tf.reduce_max(y_list, axis=1)
y_min = tf.reduce_min(y_list, axis=1)
x_max = tf.reduce_max(x_list, axis=1)
x_min = tf.reduce_min(x_list, axis=1)
return tf.transpose(tf.stack([x_min, y_min, x_max, y_max], axis=0))
示例15: ptb_producer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import strided_slice [as 別名]
def ptb_producer(raw_data, batch_size, num_steps, name=None):
"""Iterate on the raw PTB data.
This chunks up raw_data into batches of examples and returns Tensors that
are drawn from these batches.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
name: the name of this operation (optional).
Returns:
A pair of Tensors, each shaped [batch_size, num_steps]. The second element
of the tuple is the same data time-shifted to the right by one.
Raises:
tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
"""
with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
raw_data = tf.convert_to_tensor(
raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0: batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size")
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y