當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.squeeze方法代碼示例

本文整理匯總了Python中tensorflow.squeeze方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.squeeze方法的具體用法?Python tensorflow.squeeze怎麽用?Python tensorflow.squeeze使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.squeeze方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _aspect_preserving_resize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def _aspect_preserving_resize(image, smallest_side):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    smallest_side: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]
  new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
  image = tf.expand_dims(image, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
                                           align_corners=False)
  resized_image = tf.squeeze(resized_image)
  resized_image.set_shape([None, None, 3])
  return resized_image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:vgg_preprocessing.py

示例2: eval_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def eval_image(image, height, width, scope=None):
  """Prepare one image for evaluation.

  Args:
    image: 3-D float Tensor
    height: integer
    width: integer
    scope: Optional scope for name_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
  with tf.name_scope(values=[image, height, width], name=scope,
                     default_name='eval_image'):
    # Crop the central region of the image with an area containing 87.5% of
    # the original image.
    image = tf.image.central_crop(image, central_fraction=0.875)

    # Resize the image to the original height and width.
    image = tf.expand_dims(image, 0)
    image = tf.image.resize_bilinear(image, [height, width],
                                     align_corners=False)
    image = tf.squeeze(image, [0])
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:image_processing.py

示例3: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def __call__(self, input):
        with tf.variable_scope(self.name, reuse=self._reuse):
            if not self._reuse:
                print('\033[93m'+self.name+'\033[0m')
            _ = input
            num_channel = [32, 64, 128, 256, 256, 512]
            num_layer = np.ceil(np.log2(min(_.shape.as_list()[1:3]))).astype(np.int)
            for i in range(num_layer):
                ch = num_channel[i] if i < len(num_channel) else 512
                _ = conv2d(_, ch, self._is_train, info=not self._reuse,
                           norm=self._norm_type, name='conv{}'.format(i+1))
            _ = conv2d(_, int(num_channel[i]/4), self._is_train, k=1, s=1,
                       info=not self._reuse, norm='None', name='conv{}'.format(i+2))
            _ = conv2d(_, self._num_class+1, self._is_train, k=1, s=1, info=not self._reuse,
                       activation_fn=None, norm='None',
                       name='conv{}'.format(i+3))
            _ = tf.squeeze(_)
            if not self._reuse: 
                log.info('discriminator output {}'.format(_.shape.as_list()))
            self._reuse = True
            self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name)
            return tf.nn.sigmoid(_), _ 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:24,代碼來源:discriminator.py

示例4: get_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def get_prob(self, state):
        """
            ### PROBLEM 3
            ### YOUR CODE HERE
        
            args:
                state: np array (batch_size, ob_dim)

            TODO:
                likelihood: 
                    evaluate the discriminator D(x,x) on the same input
                prob:
                    compute the probability density of x from the discriminator
                    likelihood (see homework doc)
        """
        likelihood = self.get_likelihood(state, state)
        # avoid divide by 0 and log(0)
        likelihood = np.clip(np.squeeze(likelihood), 1e-5, 1-1e-5)
        prob = (1 - likelihood) / likelihood
        return prob 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:22,代碼來源:density_model.py

示例5: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros(self.old_shape, dtype=tf.float32),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          r0 = self._batch_env.observ + 0
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)
          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      observations, rewards, dones = simulate_ret
      split_observations = tf.split(observations, self.skip, axis=0)
      split_observations = [tf.squeeze(o, axis=0) for o in split_observations]
      observation = tf.concat(split_observations, axis=-1)
      with tf.control_dependencies([self._observ.assign(observation)]):
        return tf.identity(rewards[-1, ...]), tf.identity(dones[-1, ...]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:tf_atari_wrappers.py

示例6: set_precision

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def set_precision(predictions, labels,
                  weights_fn=common_layers.weights_nonzero):
  """Precision of set predictions.

  Args:
    predictions : A Tensor of scores of shape [batch, nlabels].
    labels: A Tensor of int32s giving true set elements,
      of shape [batch, seq_length].
    weights_fn: A function to weight the elements.

  Returns:
    hits: A Tensor of shape [batch, nlabels].
    weights: A Tensor of shape [batch, nlabels].
  """
  with tf.variable_scope("set_precision", values=[predictions, labels]):
    labels = tf.squeeze(labels, [2, 3])
    weights = weights_fn(labels)
    labels = tf.one_hot(labels, predictions.shape[-1])
    labels = tf.reduce_max(labels, axis=1)
    labels = tf.cast(labels, tf.bool)
    return tf.to_float(tf.equal(labels, predictions)), weights 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics.py

示例7: set_recall

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
  """Recall of set predictions.

  Args:
    predictions : A Tensor of scores of shape [batch, nlabels].
    labels: A Tensor of int32s giving true set elements,
      of shape [batch, seq_length].
    weights_fn: A function to weight the elements.

  Returns:
    hits: A Tensor of shape [batch, nlabels].
    weights: A Tensor of shape [batch, nlabels].
  """
  with tf.variable_scope("set_recall", values=[predictions, labels]):
    labels = tf.squeeze(labels, [2, 3])
    weights = weights_fn(labels)
    labels = tf.one_hot(labels, predictions.shape[-1])
    labels = tf.reduce_max(labels, axis=1)
    labels = tf.cast(labels, tf.bool)
    return tf.to_float(tf.equal(labels, predictions)), weights 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:metrics.py

示例8: rouge_l_fscore

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def rouge_l_fscore(predictions, labels, **unused_kwargs):
  """ROUGE scores computation between labels and predictions.

  This is an approximate ROUGE scoring method since we do not glue word pieces
  or decode the ids and tokenize the output.

  Args:
    predictions: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    rouge_l_fscore: approx rouge-l f1 score.
  """
  outputs = tf.to_int32(tf.argmax(predictions, axis=-1))
  # Convert the outputs and labels to a [batch_size, input_length] tensor.
  outputs = tf.squeeze(outputs, axis=[-1, -2])
  labels = tf.squeeze(labels, axis=[-1, -2])
  rouge_l_f_score = tf.py_func(rouge_l_sentence_level, (outputs, labels),
                               tf.float32)
  return rouge_l_f_score, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:rouge.py

示例9: rouge_2_fscore

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def rouge_2_fscore(predictions, labels, **unused_kwargs):
  """ROUGE-2 F1 score computation between labels and predictions.

  This is an approximate ROUGE scoring method since we do not glue word pieces
  or decode the ids and tokenize the output.

  Args:
    predictions: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    rouge2_fscore: approx rouge-2 f1 score.
  """

  outputs = tf.to_int32(tf.argmax(predictions, axis=-1))
  # Convert the outputs and labels to a [batch_size, input_length] tensor.
  outputs = tf.squeeze(outputs, axis=[-1, -2])
  labels = tf.squeeze(labels, axis=[-1, -2])
  rouge_2_f_score = tf.py_func(rouge_n, (outputs, labels), tf.float32)
  return rouge_2_f_score, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:rouge.py

示例10: bleu_score

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def bleu_score(predictions, labels, **unused_kwargs):
  """BLEU score computation between labels and predictions.

  An approximate BLEU scoring method since we do not glue word pieces or
  decode the ids and tokenize the output. By default, we use ngram order of 4
  and use brevity penalty. Also, this does not have beam search.

  Args:
    predictions: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    bleu: int, approx bleu score
  """
  outputs = tf.to_int32(tf.argmax(predictions, axis=-1))
  # Convert the outputs and labels to a [batch_size, input_length] tensor.
  outputs = tf.squeeze(outputs, axis=[-1, -2])
  labels = tf.squeeze(labels, axis=[-1, -2])

  bleu = tf.py_func(compute_bleu, (labels, outputs), tf.float32)
  return bleu, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:bleu_hook.py

示例11: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def decode(self, bottleneck):
    """Auto-decode from the bottleneck and return the result."""
    # Get the shape from bottleneck and num channels.
    shape = common_layers.shape_list(bottleneck)
    try:
      num_channels = self.hparams.problem.num_channels
    except AttributeError:
      num_channels = 1
    dummy_targets = tf.zeros(shape[:-1] + [num_channels])
    # Set the bottleneck to decode.
    if len(shape) > 4:
      bottleneck = tf.squeeze(bottleneck, axis=[1])
    bottleneck = 2 * bottleneck - 1  # Be -1/1 instead of 0/1.
    self._cur_bottleneck_tensor = bottleneck
    # Run decoding.
    res = self.infer({"targets": dummy_targets})
    self._cur_bottleneck_tensor = None
    return res 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:autoencoders.py

示例12: body

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def body(self, features):
    # Remove dropout if not training
    hparams = self._hparams
    targets = features["targets"]
    targets = tf.squeeze(targets, 2)

    (decoder_input, decoder_self_attention_bias) = attention_lm_prepare_decoder(
        targets, hparams)

    decoder_input = tf.nn.dropout(decoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)
    decoder_output = attention_lm_decoder(decoder_input,
                                          decoder_self_attention_bias, hparams)
    decoder_output = tf.expand_dims(decoder_output, 2)

    return decoder_output 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:attention_lm.py

示例13: infer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def infer(self,
            features=None,
            decode_length=50,
            beam_size=1,
            top_beams=1,
            alpha=0.0,
            use_tpu=False):
    """Predict."""
    del decode_length, beam_size, top_beams, alpha, use_tpu
    assert features is not None
    logits, _ = self(features)  # pylint: disable=not-callable
    assert len(logits.get_shape()) == 5
    logits = tf.squeeze(logits, [1, 2, 3])
    log_probs = common_layers.log_prob_from_logits(logits)
    predictions, scores = common_layers.argmax_with_score(log_probs)
    return {
        "outputs": predictions,
        "scores": scores,
    } 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:resnet.py

示例14: _create_greedy_infer_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def _create_greedy_infer_model(self):
    """Creates model for greedy inference testing.

    Returns:
      model: A t2t model.
      features: An map of string to tensor.
    """
    model, features = get_model(transformer.transformer_small())

    out_logits, _ = model(features)
    out_logits = tf.squeeze(out_logits, axis=[2, 3])
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
        labels=tf.reshape(features["targets"], [-1]))
    loss = tf.reduce_mean(loss)
    apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)

    with self.test_session():
      tf.global_variables_initializer().run()
      for _ in range(100):
        apply_grad.run()

    model.set_mode(tf.estimator.ModeKeys.PREDICT)

    return model, features 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:transformer_test.py

示例15: testGreedyTPUSlowVsFast

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import squeeze [as 別名]
def testGreedyTPUSlowVsFast(self):
    if not tf_version_has_inplace_ops():
      return

    decode_length = 3

    model, features = self._create_greedy_infer_model()

    with tf.variable_scope(tf.get_variable_scope(), reuse=True):
      slow_result = model._slow_greedy_infer_tpu(
          features, decode_length)["outputs"]
      slow_result = tf.squeeze(slow_result, axis=[2, 3])

      fast_result = model._greedy_infer(
          features, decode_length, use_tpu=True)["outputs"]

    with self.test_session():
      slow_res = slow_result.eval()
      fast_res = fast_result.eval()

    self.assertEqual(fast_res.shape,
                     (BATCH_SIZE, INPUT_LENGTH + decode_length))
    self.assertAllClose(fast_res, slow_res) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:25,代碼來源:transformer_test.py


注:本文中的tensorflow.squeeze方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。