當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.square方法代碼示例

本文整理匯總了Python中tensorflow.square方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.square方法的具體用法?Python tensorflow.square怎麽用?Python tensorflow.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.square方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def call(self, inputs, **kwargs):

        if K.ndim(inputs) != 3:
            raise ValueError(
                "Unexpected inputs dimensions %d, expect to be 3 dimensions"
                % (K.ndim(inputs)))

        concated_embeds_value = inputs

        square_of_sum = tf.square(tf.reduce_sum(
            concated_embeds_value, axis=1, keep_dims=True))
        sum_of_square = tf.reduce_sum(
            concated_embeds_value * concated_embeds_value, axis=1, keep_dims=True)
        cross_term = square_of_sum - sum_of_square
        cross_term = 0.5 * tf.reduce_sum(cross_term, axis=2, keep_dims=False)

        return cross_term 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:19,代碼來源:interaction.py

示例2: minibatch_stddev_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def minibatch_stddev_layer(x, group_size=4):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]])   # [GMCHW] Split minibatch into M groups of size G.
        y = tf.cast(y, tf.float32)                              # [GMCHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keep_dims=True)           # [GMCHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MCHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MCHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True)      # [M111]  Take average over fmaps and pixels.
        y = tf.cast(y, x.dtype)                                 # [M111]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [N1HW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Generator network used in the paper. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:18,代碼來源:networks.py

示例3: set_input_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def set_input_shape(self, input_shape):
        batch_size, dim = input_shape
        self.input_shape = [batch_size, dim]
        self.output_shape = [batch_size, self.num_hid]
        if self.init_mode == "norm":
            init = tf.random_normal([dim, self.num_hid], dtype=tf.float32)
            init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init), axis=0,
                                                       keep_dims=True))
            init = init * self.init_scale
        elif self.init_mode == "uniform_unit_scaling":
            scale = np.sqrt(3. / dim)
            init = tf.random_uniform([dim, self.num_hid], dtype=tf.float32,
                                     minval=-scale, maxval=scale)
        else:
            raise ValueError(self.init_mode)
        self.W = PV(init)
        if self.use_bias:
            self.b = PV((np.zeros((self.num_hid,))
                         + self.init_b).astype('float32')) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:picklable_model.py

示例4: _compute_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
    """Compute loss function.

    Args:
      prediction_tensor: A float tensor of shape [batch_size, num_anchors,
        code_size] representing the (encoded) predicted locations of objects.
      target_tensor: A float tensor of shape [batch_size, num_anchors,
        code_size] representing the regression targets
      weights: a float tensor of shape [batch_size, num_anchors]

    Returns:
      loss: a (scalar) tensor representing the value of the loss function
            or a float tensor of shape [batch_size, num_anchors]
    """
    weighted_diff = (prediction_tensor - target_tensor) * tf.expand_dims(
        weights, 2)
    square_diff = 0.5 * tf.square(weighted_diff)
    if self._anchorwise_output:
      return tf.reduce_sum(square_diff, 2)
    return tf.reduce_sum(square_diff) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:losses.py

示例5: diag_gaussian_log_likelihood

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0):
  """Log-likelihood under a Gaussian distribution with diagonal covariance.
    Returns the log-likelihood for each dimension.  One should sum the
    results for the log-likelihood under the full multidimensional model.

  Args:
    z: The value to compute the log-likelihood.
    mu: The mean of the Gaussian
    logvar: The log variance of the Gaussian.

  Returns:
    The log-likelihood under the Gaussian model.
  """

  return -0.5 * (logvar + np.log(2*np.pi) + \
                 tf.square((z-mu)/tf.exp(0.5*logvar))) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:distributions.py

示例6: gaussian_pos_log_likelihood

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def gaussian_pos_log_likelihood(unused_mean, logvar, noise):
  """Gaussian log-likelihood function for a posterior in VAE

  Note: This function is specialized for a posterior distribution, that has the
  form of z = mean + sigma * noise.

  Args:
    unused_mean: ignore
    logvar: The log variance of the distribution
    noise: The noise used in the sampling of the posterior.

  Returns:
    The log-likelihood under the Gaussian model.
  """
  # ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2
  return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:distributions.py

示例7: log_prob_action

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def log_prob_action(self, action, logits,
                      sampling_dim, act_dim, act_type):
    """Calculate log-prob of action sampled from distribution."""
    if self.env_spec.is_discrete(act_type):
      act_log_prob = tf.reduce_sum(
          tf.one_hot(action, act_dim) * tf.nn.log_softmax(logits), -1)
    elif self.env_spec.is_box(act_type):
      means = logits[:, :sampling_dim / 2]
      std = logits[:, sampling_dim / 2:]
      act_log_prob = (- 0.5 * tf.log(2 * np.pi * tf.square(std))
                      - 0.5 * tf.square(action - means) / tf.square(std))
      act_log_prob = tf.reduce_sum(act_log_prob, -1)
    else:
      assert False

    return act_log_prob 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:policy.py

示例8: cv_squared

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def cv_squared(x):
  """The squared coefficient of variation of a sample.

  Useful as a loss to encourage a positive distribution to be more uniform.
  Epsilons added for numerical stability.
  Returns 0 for an empty Tensor.

  Args:
    x: a `Tensor`.

  Returns:
    a `Scalar`.
  """
  epsilon = 1e-10
  float_size = tf.to_float(tf.size(x)) + epsilon
  mean = tf.reduce_sum(x) / float_size
  variance = tf.reduce_sum(tf.square(x - mean)) / float_size
  return variance / (tf.square(mean) + epsilon) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:expert_utils.py

示例9: vae

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def vae(x, name, z_size):
  """Simple variational autoencoder without discretization.

  Args:
    x: Input to the discretization bottleneck.
    name: Name for the bottleneck scope.
    z_size: Number of bits used to produce discrete code; discrete codes range
      from 1 to 2**z_size.

  Returns:
    Embedding function, latent, loss, mu and log_simga.
  """
  with tf.variable_scope(name):
    mu = tf.layers.dense(x, z_size, name="mu")
    log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
    shape = common_layers.shape_list(x)
    epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
    z = mu + tf.exp(log_sigma / 2) * epsilon
    kl = 0.5 * tf.reduce_mean(
        tf.exp(log_sigma) + tf.square(mu) - 1. - log_sigma, axis=-1)
    free_bits = z_size // 4
    kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
    return z, kl_loss, mu, log_sigma 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:25,代碼來源:discretization.py

示例10: vq_nearest_neighbor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def vq_nearest_neighbor(x, means, soft_em=False, num_samples=10):
  """Find the nearest element in means to elements in x."""
  bottleneck_size = common_layers.shape_list(means)[0]
  x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
  means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
  scalar_prod = tf.matmul(x, means, transpose_b=True)
  dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
  if soft_em:
    x_means_idx = tf.multinomial(-dist, num_samples=num_samples)
    x_means_hot = tf.one_hot(
        x_means_idx, depth=common_layers.shape_list(means)[0])
    x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
  else:
    x_means_idx = tf.argmax(-dist, axis=-1)
    x_means_hot = tf.one_hot(x_means_idx, bottleneck_size)
  x_means_hot_flat = tf.reshape(x_means_hot, [-1, bottleneck_size])
  x_means = tf.matmul(x_means_hot_flat, means)
  e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
  return x_means_hot, e_loss 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:discretization.py

示例11: setup_critic_optimizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def setup_critic_optimizer(self):
        logger.info('setting up critic optimizer')
        normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
        self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
        if self.critic_l2_reg > 0.:
            critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
            for var in critic_reg_vars:
                logger.info('  regularizing: {}'.format(var.name))
            logger.info('  applying l2 regularization with {}'.format(self.critic_l2_reg))
            critic_reg = tc.layers.apply_regularization(
                tc.layers.l2_regularizer(self.critic_l2_reg),
                weights_list=critic_reg_vars
            )
            self.critic_loss += critic_reg
        critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
        critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
        logger.info('  critic shapes: {}'.format(critic_shapes))
        logger.info('  critic params: {}'.format(critic_nb_params))
        self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
        self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
            beta1=0.9, beta2=0.999, epsilon=1e-08) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:23,代碼來源:ddpg.py

示例12: compute_mfcc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def compute_mfcc(audio, **kwargs):
    """
    Compute the MFCC for a given audio waveform. This is
    identical to how DeepSpeech does it, but does it all in
    TensorFlow so that we can differentiate through it.
    """

    batch_size, size = audio.get_shape().as_list()
    audio = tf.cast(audio, tf.float32)

    # 1. Pre-emphasizer, a high-pass filter
    audio = tf.concat((audio[:, :1], audio[:, 1:] - 0.97*audio[:, :-1], np.zeros((batch_size,1000),dtype=np.float32)), 1)

    # 2. windowing into frames of 320 samples, overlapping
    windowed = tf.stack([audio[:, i:i+400] for i in range(0,size-320,160)],1)

    # 3. Take the FFT to convert to frequency space
    ffted = tf.spectral.rfft(windowed, [512])
    ffted = 1.0 / 512 * tf.square(tf.abs(ffted))

    # 4. Compute the Mel windowing of the FFT
    energy = tf.reduce_sum(ffted,axis=2)+1e-30
    filters = np.load("filterbanks.npy").T
    feat = tf.matmul(ffted, np.array([filters]*batch_size,dtype=np.float32))+1e-30

    # 5. Take the DCT again, because why not
    feat = tf.log(feat)
    feat = tf.spectral.dct(feat, type=2, norm='ortho')[:,:,:26]

    # 6. Amplify high frequencies for some reason
    _,nframes,ncoeff = feat.get_shape().as_list()
    n = np.arange(ncoeff)
    lift = 1 + (22/2.)*np.sin(np.pi*n/22)
    feat = lift*feat
    width = feat.get_shape().as_list()[1]

    # 7. And now stick the energy next to the features
    feat = tf.concat((tf.reshape(tf.log(energy),(-1,width,1)), feat[:, :, 1:]), axis=2)
    
    return feat 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:42,代碼來源:tf_logits.py

示例13: contrastive_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def contrastive_loss(self, y,d,batch_size):
        tmp= y *tf.square(d)
        #tmp= tf.mul(y,tf.square(d))
        tmp2 = (1-y) *tf.square(tf.maximum((1 - d),0))
        return tf.reduce_sum(tmp +tmp2)/batch_size/2 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:7,代碼來源:siamese_network_semantic.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:36,代碼來源:siamese_network_semantic.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import square [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                trainable=True,name="W")
            self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            #self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
            self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
            #self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)

        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:38,代碼來源:siamese_network.py


注:本文中的tensorflow.square方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。