當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.split方法代碼示例

本文整理匯總了Python中tensorflow.split方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.split方法的具體用法?Python tensorflow.split怎麽用?Python tensorflow.split使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.split方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def create_session(config_dict=dict(), force_as_default=False):
    config = tf.ConfigProto()
    for key, value in config_dict.items():
        fields = key.split('.')
        obj = config
        for field in fields[:-1]:
            obj = getattr(obj, field)
        setattr(obj, fields[-1], value)
    session = tf.Session(config=config)
    if force_as_default:
        session._default_session = session.as_default()
        session._default_session.enforce_nesting = False
        session._default_session.__enter__()
    return session

#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tf.variables_initializer(tf.report_unitialized_variables()).run() 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:21,代碼來源:tfutil.py

示例2: init_uninited_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def init_uninited_vars(vars=None):
    if vars is None: vars = tf.global_variables()
    test_vars = []; test_ops = []
    with tf.control_dependencies(None): # ignore surrounding control_dependencies
        for var in vars:
            assert is_tf_expression(var)
            try:
                tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/IsVariableInitialized:0'))
            except KeyError:
                # Op does not exist => variable may be uninitialized.
                test_vars.append(var)
                with absolute_name_scope(var.name.split(':')[0]):
                    test_ops.append(tf.is_variable_initialized(var))
    init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
    run([var.initializer for var in init_vars])

#----------------------------------------------------------------------------
# Set the values of given tf.Variables.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tfutil.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:22,代碼來源:tfutil.py

示例3: preprocess_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def preprocess_batch(images_batch, preproc_func=None):
    """
    Creates a preprocessing graph for a batch given a function that processes
    a single image.

    :param images_batch: A tensor for an image batch.
    :param preproc_func: (optional function) A function that takes in a
        tensor and returns a preprocessed input.
    """
    if preproc_func is None:
        return images_batch

    with tf.variable_scope('preprocess'):
        images_list = tf.split(images_batch, int(images_batch.shape[0]))
        result_list = []
        for img in images_list:
            reshaped_img = tf.reshape(img, img.shape[1:])
            processed_img = preproc_func(reshaped_img)
            result_list.append(tf.expand_dims(processed_img, axis=0))
        result_images = tf.concat(result_list, axis=0)
    return result_images 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:utils.py

示例4: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def __call__(self, inputs, state, scope=None):
    """GRU cell with layer normalization."""
    input_dim = inputs.get_shape().as_list()[1]
    num_units = self._num_units

    with tf.variable_scope(scope or "gru_cell"):
      with tf.variable_scope("gates"):
        w_h = tf.get_variable(
            "w_h", [num_units, 2 * num_units],
            initializer=self._w_h_initializer())
        w_x = tf.get_variable(
            "w_x", [input_dim, 2 * num_units],
            initializer=self._w_x_initializer(input_dim))
        z_and_r = (_layer_norm(tf.matmul(state, w_h), scope="layer_norm/w_h") +
                   _layer_norm(tf.matmul(inputs, w_x), scope="layer_norm/w_x"))
        z, r = tf.split(tf.sigmoid(z_and_r), 2, 1)
      with tf.variable_scope("candidate"):
        w = tf.get_variable(
            "w", [input_dim, num_units], initializer=self._w_initializer)
        u = tf.get_variable(
            "u", [num_units, num_units], initializer=self._u_initializer)
        h_hat = (r * _layer_norm(tf.matmul(state, u), scope="layer_norm/u") +
                 _layer_norm(tf.matmul(inputs, w), scope="layer_norm/w"))
      new_h = (1 - z) * state + z * self._activation(h_hat)
    return new_h, new_h 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:gru_cell.py

示例5: batch_random_flip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def batch_random_flip(input_):
    """Simultaneous horizontal random flip."""
    if isinstance(input_, (float, int)):
        return input_
    shape = input_.get_shape().as_list()
    batch_size = shape[0]
    height = shape[1]
    width = shape[2]
    channels = shape[3]
    res = tf.split(axis=0, num_or_size_splits=batch_size, value=input_)
    res = [elem[0, :, :, :] for elem in res]
    res = [tf.image.random_flip_left_right(elem) for elem in res]
    res = [tf.reshape(elem, [1, height, width, channels]) for elem in res]
    res = tf.concat(axis=0, values=res)

    return res


# build a one hot representation corresponding to the integer tensor
# the one-hot dimension is appended to the integer tensor shape 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:real_nvp_utils.py

示例6: get_layer_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def get_layer_size(self, layer_name):
    if layer_name == 'logits':
      return self._component.num_actions

    if layer_name == 'last_layer':
      return self._hidden_layer_sizes[-1]

    if not layer_name.startswith('layer_'):
      logging.fatal(
          'Invalid layer name: "%s" Can only retrieve from "logits", '
          '"last_layer", and "layer_*".',
          layer_name)

    # NOTE(danielandor): Since get_layer_size is called before the
    # model has been built, we compute the layer size directly from
    # the hyperparameters rather than from self._layers.
    layer_index = int(layer_name.split('_')[1])
    return self._hidden_layer_sizes[layer_index] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:network_units.py

示例7: clip_to_window

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def clip_to_window(keypoints, window, scope=None):
  """Clips keypoints to a window.

  This op clips any input keypoints to a window.

  Args:
    keypoints: a tensor of shape [num_instances, num_keypoints, 2]
    window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
      window to which the op should clip the keypoints.
    scope: name scope.

  Returns:
    new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
  """
  with tf.name_scope(scope, 'ClipToWindow'):
    y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
    win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
    y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
    x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
    new_keypoints = tf.concat([y, x], 2)
    return new_keypoints 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:keypoint_ops.py

示例8: scale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def scale(boxlist, y_scale, x_scale, scope=None):
  """scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: (float) scalar tensor
    x_scale: (float) scalar tensor
    scope: name scope.

  Returns:
    boxlist: BoxList holding N boxes
  """
  with tf.name_scope(scope, 'Scale'):
    y_scale = tf.cast(y_scale, tf.float32)
    x_scale = tf.cast(x_scale, tf.float32)
    y_min, x_min, y_max, x_max = tf.split(
        value=boxlist.get(), num_or_size_splits=4, axis=1)
    y_min = y_scale * y_min
    y_max = y_scale * y_max
    x_min = x_scale * x_min
    x_max = x_scale * x_max
    scaled_boxlist = box_list.BoxList(
        tf.concat([y_min, x_min, y_max, x_max], 1))
    return _copy_extra_fields(scaled_boxlist, boxlist) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:box_list_ops.py

示例9: intersection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def intersection(boxlist1, boxlist2, scope=None):
  """Compute pairwise intersection areas between boxes.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding M boxes
    scope: name scope.

  Returns:
    a tensor with shape [N, M] representing pairwise intersections
  """
  with tf.name_scope(scope, 'Intersection'):
    y_min1, x_min1, y_max1, x_max1 = tf.split(
        value=boxlist1.get(), num_or_size_splits=4, axis=1)
    y_min2, x_min2, y_max2, x_max2 = tf.split(
        value=boxlist2.get(), num_or_size_splits=4, axis=1)
    all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
    all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
    intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
    all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
    all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
    intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
    return intersect_heights * intersect_widths 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:box_list_ops.py

示例10: matched_intersection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def matched_intersection(boxlist1, boxlist2, scope=None):
  """Compute intersection areas between corresponding boxes in two boxlists.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding N boxes
    scope: name scope.

  Returns:
    a tensor with shape [N] representing pairwise intersections
  """
  with tf.name_scope(scope, 'MatchedIntersection'):
    y_min1, x_min1, y_max1, x_max1 = tf.split(
        value=boxlist1.get(), num_or_size_splits=4, axis=1)
    y_min2, x_min2, y_max2, x_max2 = tf.split(
        value=boxlist2.get(), num_or_size_splits=4, axis=1)
    min_ymax = tf.minimum(y_max1, y_max2)
    max_ymin = tf.maximum(y_min1, y_min2)
    intersect_heights = tf.maximum(0.0, min_ymax - max_ymin)
    min_xmax = tf.minimum(x_max1, x_max2)
    max_xmin = tf.maximum(x_min1, x_min2)
    intersect_widths = tf.maximum(0.0, min_xmax - max_xmin)
    return tf.reshape(intersect_heights * intersect_widths, [-1]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:box_list_ops.py

示例11: flip_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def flip_boxes(boxes):
  """Left-right flip the boxes.

  Args:
    boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
           Boxes are in normalized form meaning their coordinates vary
           between [0, 1].
           Each row is in the form of [ymin, xmin, ymax, xmax].

  Returns:
    Flipped boxes.
  """
  # Flip boxes.
  ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
  flipped_xmin = tf.subtract(1.0, xmax)
  flipped_xmax = tf.subtract(1.0, xmin)
  flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1)
  return flipped_boxes 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:preprocessor.py

示例12: _CrossConv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def _CrossConv(self, encoded_images):
    """Apply the motion kernel on the encoded_images."""
    cross_conved_images = []
    kernels = tf.split(axis=3, num_or_size_splits=4, value=self.kernel)
    for (i, encoded_image) in enumerate(encoded_images):
      with tf.variable_scope('cross_conv_%d' % i):
        kernel = kernels[i]

        encoded_image = tf.unstack(encoded_image, axis=0)
        kernel = tf.unstack(kernel, axis=0)
        assert len(encoded_image) == len(kernel)
        assert len(encoded_image) == self.params['batch_size']
        conved_image = []
        for j in xrange(len(encoded_image)):
          conved_image.append(self._CrossConvHelper(
              encoded_image[j], kernel[j]))
        cross_conved_images.append(tf.concat(axis=0, values=conved_image))
        sys.stderr.write('cross_conved shape: %s\n' %
                         cross_conved_images[-1].get_shape())
    return cross_conved_images 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:model.py

示例13: _Apply

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def _Apply(self, *args):
    xtransform = self._TransformInputs(*args)
    depth_axis = len(self._output_shape) - 1

    if self.hidden is not None:
      htransform = self._TransformHidden(self.hidden)
      f, i, j, o = tf.split(
          value=htransform + xtransform, num_or_size_splits=4, axis=depth_axis)
    else:
      f, i, j, o = tf.split(
          value=xtransform, num_or_size_splits=4, axis=depth_axis)

    if self.cell is not None:
      self.cell = tf.sigmoid(f) * self.cell + tf.sigmoid(i) * tf.tanh(j)
    else:
      self.cell = tf.sigmoid(i) * tf.tanh(j)

    self.hidden = tf.sigmoid(o) * tf.tanh(self.cell)
    return self.hidden 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:blocks_lstm.py

示例14: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def call(self, inputs):
        mean_and_log_std = self.model(inputs)
        mean, log_std = tf.split(mean_and_log_std, num_or_size_splits=2, axis=1)
        log_std = tf.clip_by_value(log_std, -20., 2.)
        
        distribution = tfp.distributions.MultivariateNormalDiag(
            loc=mean,
            scale_diag=tf.exp(log_std)
        )
        
        raw_actions = distribution.sample()
        if not self._reparameterize:
            ### Problem 1.3.A
            ### YOUR CODE HERE
            raw_actions = tf.stop_gradient(raw_actions)
        log_probs = distribution.log_prob(raw_actions)
        log_probs -= self._squash_correction(raw_actions)

        ### Problem 2.A
        ### YOUR CODE HERE
        self.actions = tf.tanh(raw_actions)
            
        return self.actions, log_probs 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:25,代碼來源:nn.py

示例15: conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import split [as 別名]
def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w,  padding="VALID", group=1):
    '''From https://github.com/ethereon/caffe-tensorflow
    '''
    c_i = input.get_shape()[-1]
    assert c_i%group==0
    assert c_o%group==0
    convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)


    if group==1:
        conv = convolve(input, kernel)
    else:
        input_groups = tf.split(input, group, 3)
        kernel_groups = tf.split(kernel, group, 3)
        output_groups = [convolve(i, k) for i,k in zip(input_groups, kernel_groups)]
        conv = tf.concat(output_groups, 3)
    return  tf.reshape(tf.nn.bias_add(conv, biases), [-1]+conv.get_shape().as_list()[1:]) 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:19,代碼來源:network.py


注:本文中的tensorflow.split方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。