本文整理匯總了Python中tensorflow.sparse_to_dense方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_to_dense方法的具體用法?Python tensorflow.sparse_to_dense怎麽用?Python tensorflow.sparse_to_dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.sparse_to_dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: one_hot_encoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
"""Transform numeric labels into onehot_labels.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
scope: Optional scope for name_scope.
Returns:
one hot encoding of the labels.
"""
with tf.name_scope(scope, 'OneHotEncoding', [labels]):
batch_size = labels.get_shape()[0]
indices = tf.expand_dims(tf.range(0, batch_size), 1)
labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
concated = tf.concat(axis=1, values=[indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.stack([batch_size, num_classes]), 1.0, 0.0)
onehot_labels.set_shape([batch_size, num_classes])
return onehot_labels
示例2: one_hot_encoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
"""Transform numeric labels into onehot_labels.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
scope: Optional scope for op_scope.
Returns:
one hot encoding of the labels.
"""
with tf.op_scope([labels], scope, 'OneHotEncoding'):
batch_size = labels.get_shape()[0]
indices = tf.expand_dims(tf.range(0, batch_size), 1)
labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
concated = tf.concat(1, [indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
onehot_labels.set_shape([batch_size, num_classes])
return onehot_labels
示例3: one_hot_encoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def one_hot_encoding(labels, num_classes, scope=None):
"""Transform numeric labels into onehot_labels.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
scope: Optional scope for name_scope.
Returns:
one hot encoding of the labels.
"""
with tf.name_scope(scope, 'OneHotEncoding', [labels]):
batch_size = labels.get_shape()[0]
indices = tf.expand_dims(tf.range(0, batch_size), 1)
labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
concated = tf.concat([indices, labels], 1)
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
onehot_labels.set_shape([batch_size, num_classes])
return onehot_labels
示例4: cartesian_product
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def cartesian_product(a, b, axis):
a_rank = tf.rank(a)
a_dim = tf.shape(a)[axis]
b_rank = tf.rank(b)
b_dim = tf.shape(b)[axis]
axis_a_repeat = tf.sparse_to_dense(sparse_indices=[axis+1], sparse_values=[b_dim], output_shape=[a_rank+1], default_value=1)
tile_a = tf.tile(tf.expand_dims(a, axis+1), axis_a_repeat)
axis_b_repeat = tf.sparse_to_dense(sparse_indices=[axis], sparse_values=[a_dim], output_shape=[b_rank+1], default_value=1)
tile_b = tf.tile(tf.expand_dims(b, axis), axis_b_repeat)
cart_prod = tf.concat([tile_a, tile_b], axis=-1)
#Defining the last dimension of resulting tensor (originally undefined)
last_dim = int(a.get_shape()[-1]) + int(b.get_shape()[-1])
cart_prod_shape = list(cart_prod.get_shape())
cart_prod_shape[-1] = last_dim
cart_prod.set_shape(cart_prod_shape)
return cart_prod
示例5: kSparse
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def kSparse(self, x, topk):
print 'run regular k-sparse'
dim = int(x.get_shape()[1])
if topk > dim:
warnings.warn('Warning: topk should not be larger than dim: %s, found: %s, using %s' % (dim, topk, dim))
topk = dim
k = dim - topk
values, indices = tf.nn.top_k(-x, k) # indices will be [[0, 1], [2, 1]], values will be [[6., 2.], [5., 4.]]
# We need to create full indices like [[0, 0], [0, 1], [1, 2], [1, 1]]
my_range = tf.expand_dims(tf.range(0, tf.shape(indices)[0]), 1) # will be [[0], [1]]
my_range_repeated = tf.tile(my_range, [1, k]) # will be [[0, 0], [1, 1]]
full_indices = tf.stack([my_range_repeated, indices], axis=2) # change shapes to [N, k, 1] and [N, k, 1], to concatenate into [N, k, 2]
full_indices = tf.reshape(full_indices, [-1, 2])
to_reset = tf.sparse_to_dense(full_indices, tf.shape(x), tf.reshape(values, [-1]), default_value=0., validate_indices=False)
res = tf.add(x, to_reset)
return res
示例6: nms_return_masks
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def nms_return_masks(self, X):
config = self.config
prob, box = X # [K], [K,4]
output_shape = tf.shape(prob)
# [K]
ids = tf.reshape(tf.where(prob > config.result_score_thres), [-1])
prob_ = tf.gather(prob, ids)
box_ = tf.gather(box, ids)
# NMS
selection = tf.image.non_max_suppression(
box_, prob_, max_output_size=config.result_per_im,
iou_threshold=config.fastrcnn_nms_iou_thres)
selection = tf.to_int32(tf.gather(ids, selection))
sorted_selection = -tf.nn.top_k(-selection, k=tf.size(selection))[0]
mask = tf.sparse_to_dense(
sparse_indices=sorted_selection,
output_shape=output_shape,
sparse_values=True,
default_value=False)
return mask
示例7: parse_example_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def parse_example_batch(serialized):
"""Parses a batch of tf.Example protos.
Args:
serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
Returns:
encode: A SentenceBatch of encode sentences.
decode_pre: A SentenceBatch of "previous" sentences to decode.
decode_post: A SentenceBatch of "post" sentences to decode.
"""
features = tf.parse_example(
serialized,
features={"features": tf.VarLenFeature(dtype=tf.int64)}
)
features = features["features"]
def _sparse_to_batch(sparse):
ids = tf.sparse_tensor_to_dense(sparse) # Padding with zeroes.
mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
tf.ones_like(sparse.values, dtype=tf.int32))
return SentenceBatch(ids=ids, mask=mask)
return _sparse_to_batch(features)
示例8: parse_example_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def parse_example_batch(serialized):
"""Parses a batch of tf.Example protos.
Args:
serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
Returns:
encode: A SentenceBatch of encode sentences.
decode_pre: A SentenceBatch of "previous" sentences to decode.
decode_post: A SentenceBatch of "post" sentences to decode.
"""
features = tf.parse_example(
serialized,
features={
"encode": tf.VarLenFeature(dtype=tf.int64),
"decode_pre": tf.VarLenFeature(dtype=tf.int64),
"decode_post": tf.VarLenFeature(dtype=tf.int64),
})
def _sparse_to_batch(sparse):
ids = tf.sparse_tensor_to_dense(sparse) # Padding with zeroes.
mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
tf.ones_like(sparse.values, dtype=tf.int32))
return SentenceBatch(ids=ids, mask=mask)
output_names = ("encode", "decode_pre", "decode_post")
return tuple(_sparse_to_batch(features[x]) for x in output_names)
示例9: as_one_hot
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def as_one_hot(input_, n_indices):
"""Convert indices to one-hot."""
shape = input_.get_shape().as_list()
n_elem = numpy.prod(shape)
indices = tf.range(n_elem)
indices = tf.cast(indices, tf.int64)
indices_input = tf.concat(axis=0, values=[indices, tf.reshape(input_, [-1])])
indices_input = tf.reshape(indices_input, [2, -1])
indices_input = tf.transpose(indices_input)
res = tf.sparse_to_dense(
indices_input, [n_elem, n_indices], 1., 0., name="flat_one_hot")
res = tf.reshape(res, [elem for elem in shape] + [n_indices])
return res
示例10: _count_matrix_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols):
"""Creates ops that read submatrix shards from disk."""
random.shuffle(filenames)
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64),
'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64),
'sparse_local_row': tf.VarLenFeature(dtype=tf.int64),
'sparse_local_col': tf.VarLenFeature(dtype=tf.int64),
'sparse_value': tf.VarLenFeature(dtype=tf.float32)
})
global_row = features['global_row']
global_col = features['global_col']
sparse_local_row = features['sparse_local_row'].values
sparse_local_col = features['sparse_local_col'].values
sparse_count = features['sparse_value'].values
sparse_indices = tf.concat(
axis=1, values=[tf.expand_dims(sparse_local_row, 1),
tf.expand_dims(sparse_local_col, 1)])
count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols],
sparse_count)
return global_row, global_col, count
示例11: AddCrossEntropy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def AddCrossEntropy(batch_size, n):
"""Adds a cross entropy cost function."""
cross_entropies = []
def _Pass():
return tf.constant(0, dtype=tf.float32, shape=[1])
for beam_id in range(batch_size):
beam_gold_slot = tf.reshape(
tf.strided_slice(n['gold_slot'], [beam_id], [beam_id + 1]), [1])
def _ComputeCrossEntropy():
"""Adds ops to compute cross entropy of the gold path in a beam."""
# Requires a cast so that UnsortedSegmentSum, in the gradient,
# is happy with the type of its input 'segment_ids', which
# must be int32.
idx = tf.cast(
tf.reshape(
tf.where(tf.equal(n['beam_ids'], beam_id)), [-1]), tf.int32)
beam_scores = tf.reshape(tf.gather(n['all_path_scores'], idx), [1, -1])
num = tf.shape(idx)
return tf.nn.softmax_cross_entropy_with_logits(
labels=tf.expand_dims(
tf.sparse_to_dense(beam_gold_slot, num, [1.], 0.), 0),
logits=beam_scores)
# The conditional here is needed to deal with the last few batches of the
# corpus which can contain -1 in beam_gold_slot for empty batch slots.
cross_entropies.append(cf.cond(
beam_gold_slot[0] >= 0, _ComputeCrossEntropy, _Pass))
return {'cross_entropy': tf.div(tf.add_n(cross_entropies), batch_size)}
示例12: indices_to_dense_vector
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def indices_to_dense_vector(indices,
size,
indices_value=1.,
default_value=0,
dtype=tf.float32):
"""Creates dense vector with indices set to specific value and rest to zeros.
This function exists because it is unclear if it is safe to use
tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
with indices which are not ordered.
This function accepts a dynamic size (e.g. tf.shape(tensor)[0])
Args:
indices: 1d Tensor with integer indices which are to be set to
indices_values.
size: scalar with size (integer) of output Tensor.
indices_value: values of elements specified by indices in the output vector
default_value: values of other elements in the output vector.
dtype: data type.
Returns:
dense 1D Tensor of shape [size] with indices set to indices_values and the
rest set to default_value.
"""
size = tf.to_int32(size)
zeros = tf.ones([size], dtype=dtype) * default_value
values = tf.ones_like(indices, dtype=dtype) * indices_value
return tf.dynamic_stitch([tf.range(size), tf.to_int32(indices)],
[zeros, values])
示例13: fill_in_missing
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def fill_in_missing(x):
default_value = "" if x.dtype == tf.string else 0
dense_tensor = tf.sparse_to_dense(x.indices,
[x.dense_shape[0], 1],
x.values,
default_value)
return tf.squeeze(dense_tensor, axis=1)
示例14: softmax_loss_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def softmax_loss_layer(name, score_bottom, label_bottom):
"""
Calculates cumulative Softmax Cross Entropy Loss along the last dimension
*This function does not divide the loss by batch size*
Once tensorflow has SparseCrossEntropy function, this one will be replaced
"""
# Check shape
score_shape = score_bottom.get_shape().as_list()
label_shape = label_bottom.get_shape().as_list()
assert len(score_shape) == len(label_shape) + 1
assert score_shape[:-1] == label_shape
# Compute the outer dimensions dimensions in label
inner_dim = score_shape[-1]
outer_dim = 1
for d in label_shape: outer_dim *= d
# flatten score and label
flat_score = tf.reshape(score_bottom, [outer_dim, inner_dim])
flat_label = tf.reshape(label_bottom, [outer_dim, 1])
# Reshape the labels into a dense Tensor of
# shape [batch_size, NUM_CLASSES].
sparse_labels = tf.reshape(labels, [FLAGS.batch_size, 1])
indices = tf.reshape(tf.range(FLAGS.batch_size), [FLAGS.batch_size, 1])
concated = tf.concat(axis=1, values=[indices, sparse_labels])
dense_labels = tf.sparse_to_dense(concated, [FLAGS.batch_size, NUM_CLASSES],
1.0, 0.0)
示例15: indices_to_dense_vector
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_to_dense [as 別名]
def indices_to_dense_vector(indices,
size,
indices_value=1.,
default_value=0,
dtype=tf.float32):
"""Creates dense vector with indices set to specific (the para "indices_value" ) and rest to zeros.
This function exists because it is unclear if it is safe to use
tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
with indices which are not ordered.
This function accepts a dynamic size (e.g. tf.shape(tensor)[0])
Args:
indices: 1d Tensor with integer indices which are to be set to
indices_values.
size: scalar with size (integer) of output Tensor.
indices_value: values of elements specified by indices in the output vector
default_value: values of other elements in the output vector.
dtype: data type.
Returns:
dense 1D Tensor of shape [size] with indices set to indices_values and the
rest set to default_value.
"""
size = tf.to_int32(size)
zeros = tf.ones([size], dtype=dtype) * default_value
values = tf.ones_like(indices, dtype=dtype) * indices_value
return tf.dynamic_stitch([tf.range(size), tf.to_int32(indices)],
[zeros, values])