當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sparse_tensor_dense_matmul方法代碼示例

本文整理匯總了Python中tensorflow.sparse_tensor_dense_matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_tensor_dense_matmul方法的具體用法?Python tensorflow.sparse_tensor_dense_matmul怎麽用?Python tensorflow.sparse_tensor_dense_matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sparse_tensor_dense_matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _build_model(self):
        # define initial relation features
        if self.use_context or (self.use_path and self.path_type == 'rnn'):
            self._build_relation_feature()

        self.scores = 0.0

        if self.use_context:
            edges_list, mask_list = self._get_neighbors_and_masks(self.labels, self.entity_pairs, self.train_edges)
            self.aggregators = self._get_neighbor_aggregators()  # define aggregators for each layer
            self.aggregated_neighbors = self._aggregate_neighbors(edges_list, mask_list)  # [batch_size, n_relations]
            self.scores += self.aggregated_neighbors

        if self.use_path:
            if self.path_type == 'embedding':
                self.W, self.b = self._get_weight_and_bias(self.n_paths, self.n_relations)  # [batch_size, n_relations]
                self.scores += tf.sparse_tensor_dense_matmul(self.path_features, self.W) + self.b

            elif self.path_type == 'rnn':
                rnn_output = self._rnn(self.path_ids)  # [batch_size, path_samples, n_relations]
                self.scores += self._aggregate_paths(rnn_output)

        # narrow the range of scores to [0, 1] for the ease of calculating ranking-based metrics
        self.scores_normalized = tf.sigmoid(self.scores) 
開發者ID:hwwang55,項目名稱:PathCon,代碼行數:26,代碼來源:model.py

示例2: matmul_wrapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def matmul_wrapper(A, B, optype):
    """Wrapper for handling sparse and dense versions of `tf.matmul` operation.

    Parameters
    ----------
    A : tf.Tensor
    B : tf.Tensor
    optype : str, {'dense', 'sparse'}

    Returns
    -------
    tf.Tensor
    """
    with tf.name_scope('matmul_wrapper') as scope:
        if optype == 'dense':
            return tf.matmul(A, B)
        elif optype == 'sparse':
            return tf.sparse_tensor_dense_matmul(A, B)
        else:
            raise NameError('Unknown input type in matmul_wrapper') 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:22,代碼來源:utils.py

示例3: __build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def __build(self):
        w_init = tf.contrib.layers.xavier_initializer

        sizes = [self.D] + self.n_hidden

        for i in range(1, len(sizes)):
            W = tf.get_variable(name='W{}'.format(i), shape=[sizes[i - 1], sizes[i]], dtype=tf.float32,
                                initializer=w_init())
            b = tf.get_variable(name='b{}'.format(i), shape=[sizes[i]], dtype=tf.float32, initializer=w_init())

            if i == 1:
                encoded = tf.sparse_tensor_dense_matmul(self.X, W) + b
            else:
                encoded = tf.matmul(encoded, W) + b

            encoded = tf.nn.relu(encoded)

        W_mu = tf.get_variable(name='W_mu', shape=[sizes[-1], self.L], dtype=tf.float32, initializer=w_init())
        b_mu = tf.get_variable(name='b_mu', shape=[self.L], dtype=tf.float32, initializer=w_init())
        self.mu = tf.matmul(encoded, W_mu) + b_mu

        W_sigma = tf.get_variable(name='W_sigma', shape=[sizes[-1], self.L], dtype=tf.float32, initializer=w_init())
        b_sigma = tf.get_variable(name='b_sigma', shape=[self.L], dtype=tf.float32, initializer=w_init())
        log_sigma = tf.matmul(encoded, W_sigma) + b_sigma
        self.sigma = tf.nn.elu(log_sigma) + 1 + 1e-14 
開發者ID:abojchevski,項目名稱:graph2gauss,代碼行數:27,代碼來源:model.py

示例4: aggregate_maxpool

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def aggregate_maxpool(features, agg_transform_size, adj_with_self_loops_indices, num_features, name):
    with tf.name_scope(name):
        fc_weights = tf.get_variable(f"{name}-fc_weights",
                                     shape=[num_features, agg_transform_size],
                                     dtype=tf.float32,
                                     initializer=tf.glorot_uniform_initializer(),
                                     )
        # dims: num_nodes x num_features, num_features x agg_transform_size -> num_nodes x agg_transform_size
        if isinstance(features, tf.SparseTensor):
            transformed_features = tf.sparse_tensor_dense_matmul(features, fc_weights)
        else:
            transformed_features = tf.matmul(features, fc_weights)
        transformed_features = tf.nn.relu(transformed_features)

        # Spread out the transformed features to neighbours.
        # dims: num_nodes x agg_transform_size, num_nodes x max_degree -> num_nodes x agg_transform_size x max_degree
        neighbours_features = tf.gather(transformed_features, adj_with_self_loops_indices)

        # employ the max aggregator
        output = tf.reduce_max(neighbours_features, axis=1)
        return output


# dims:
#   features: num_nodes x num_features 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:27,代碼來源:graphsage.py

示例5: optimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def optimize(self, learning_rate, global_step):
        if self.prop_type == 'vanilla':
            # dims: num_nodes x num_nodes, num_nodes x num_labels, num_nodes -> num_nodes x num_labels
            new_predicted_labels = tf.sparse_tensor_dense_matmul(self.graph_adj, self.predicted_labels) / self.degrees
            # set entries where we have a label to zero...
            new_predicted_labels *= self._get_labelled_nodes_mask()
            # ... and add already known labels
            new_predicted_labels += self.initial_predicted_labels
        else:
            new_predicted_labels = (1 - self.return_prob) * tf.sparse_tensor_dense_matmul(self.graph_adj,
                                                                                          self.predicted_labels) \
                                   + self.return_prob * self.initial_predicted_labels

        # update predictions variable
        predicted_labels_update_op = self.predicted_labels.assign(new_predicted_labels)
        return predicted_labels_update_op, global_step.assign_add(1) 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:18,代碼來源:labelprop.py

示例6: fully_connected_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def fully_connected_layer(inputs, output_dim, activation_fn, dropout_prob, weight_decay, name):
    with tf.name_scope(name):
        input_dim = int(inputs.get_shape()[1])
        weights = tf.get_variable("%s-weights" % name, [input_dim, output_dim], dtype=tf.float32,
                                  initializer=tf.glorot_uniform_initializer(),
                                  regularizer=slim.l2_regularizer(weight_decay))

        # Apply dropout to inputs if required
        inputs = tf.cond(
            tf.cast(dropout_prob, tf.bool),
            true_fn=(lambda: dropout_supporting_sparse_tensors(inputs, 1 - dropout_prob)),
            false_fn=(lambda: inputs),
        )

        if isinstance(inputs, tf.SparseTensor):
            output = tf.sparse_tensor_dense_matmul(inputs, weights)
        else:
            output = tf.matmul(inputs, weights)
        output = tf.contrib.layers.bias_add(output)
        return activation_fn(output) if activation_fn else output 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:22,代碼來源:mlp.py

示例7: testShapeInference

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def testShapeInference(self):
    x = np.random.rand(10, 10)
    x[np.abs(x) < 0.5] = 0  # Make it sparse
    y = np.random.randn(10, 20)
    x_indices = np.vstack(np.where(x)).astype(np.int64).T
    x_values = x[np.where(x)]
    x_shape = x.shape
    x_st = tf.SparseTensor(x_indices, x_values, x_shape)
    result = tf.sparse_tensor_dense_matmul(x_st, y)
    self.assertEqual(result.get_shape(), (10, 20))

    x_shape_unknown = tf.placeholder(dtype=tf.int64, shape=None)
    x_st_shape_unknown = tf.SparseTensor(x_indices, x_values, x_shape_unknown)
    result_left_shape_unknown = tf.sparse_tensor_dense_matmul(
        x_st_shape_unknown, y)
    self.assertEqual(
        result_left_shape_unknown.get_shape().as_list(), [None, 20])

    x_shape_inconsistent = [10, 15]
    x_st_shape_inconsistent = tf.SparseTensor(
        x_indices, x_values, x_shape_inconsistent)
    with self.assertRaisesRegexp(ValueError, "Dimensions must be equal"):
      tf.sparse_tensor_dense_matmul(x_st_shape_inconsistent, y)

  # Tests setting one dimension to be a high value. 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:sparse_tensor_dense_matmul_op_test.py

示例8: _sparse_tensor_dense_vs_dense_matmul_benchmark_sparse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _sparse_tensor_dense_vs_dense_matmul_benchmark_sparse(
    x_ind, x_val, x_shape, y, adjoint_a, adjoint_b):
  sp_x = tf.SparseTensor(indices=x_ind, values=x_val, shape=x_shape)

  def body(t, prev):
    with tf.control_dependencies([prev]):
      return (t + 1,
              sparse_ops.sparse_tensor_dense_matmul(
                  sp_x, y, adjoint_a=adjoint_a, adjoint_b=adjoint_b))

  t0 = tf.constant(0)
  v0 = tf.constant(0.0)
  def _timeit(iterations, _):
    (_, final) = tf.while_loop(
        lambda t, _: t < iterations, body, (t0, v0),
        parallel_iterations=1, back_prop=False)
    return [final]
  return _timeit 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:sparse_tensor_dense_matmul_op_test.py

示例9: _testGradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _testGradients(self, adjoint_a, adjoint_b, name, np_dtype):
    n, k, m = np.random.randint(1, 10, size=3)
    sp_t, nnz = self._randomTensor(
        [n, k], np_dtype, adjoint=adjoint_a, sparse=True)
    dense_t = self._randomTensor([k, m], np_dtype, adjoint=adjoint_b)

    matmul = tf.sparse_tensor_dense_matmul(
        sp_t, dense_t, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name=name)

    with self.test_session(use_gpu=True):
      dense_t_shape = [m, k] if adjoint_b else [k, m]
      sp_t_val_shape = [nnz]
      err = tf.test.compute_gradient_error([dense_t, sp_t.values],
                                           [dense_t_shape, sp_t_val_shape],
                                           matmul, [n, m])
      print("%s gradient err = %s" % (name, err))
      self.assertLess(err, 1e-3) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:sparse_tensor_dense_matmul_grad_test.py

示例10: node_attention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def node_attention(inputs, adj, return_weights=False):
        hidden_size = inputs.shape[-1].value
        H_v = tf.Variable(tf.random_normal([hidden_size, 1], stddev=0.1))

        # convert adj to sparse tensor
        zero = tf.constant(0, dtype=tf.float32)
        where = tf.not_equal(adj, zero)
        indices = tf.where(where)
        values = tf.gather_nd(adj, indices)
        adj = tf.SparseTensor(indices=indices,
                              values=values,
                              dense_shape=adj.shape)

        with tf.name_scope('v'):
            v = adj * tf.squeeze(tf.tensordot(inputs, H_v, axes=1))

        weights = tf.sparse_softmax(v, name='alphas')  # [nodes,nodes]
        output = tf.sparse_tensor_dense_matmul(weights, inputs)

        if not return_weights:
            return output
        else:
            return output, weights

    # view-level attention (equation (4) in SemiGNN) 
開發者ID:safe-graph,項目名稱:DGFraud,代碼行數:27,代碼來源:layers.py

示例11: _create_gcn_embed

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _create_gcn_embed(self):
        A_fold_hat = self._split_A_hat(self.norm_adj)
        embeddings = tf.concat([self.weights['user_embedding'], self.weights['item_embedding']], axis=0)


        all_embeddings = [embeddings]

        for k in range(0, self.n_layers):
            temp_embed = []
            for f in range(self.n_fold):
                temp_embed.append(tf.sparse_tensor_dense_matmul(A_fold_hat[f], embeddings))

            embeddings = tf.concat(temp_embed, 0)
            embeddings = tf.nn.leaky_relu(tf.matmul(embeddings, self.weights['W_gc_%d' %k]) + self.weights['b_gc_%d' %k])
            embeddings = tf.nn.dropout(embeddings, 1 - self.mess_dropout[k])

            all_embeddings += [embeddings]

        all_embeddings = tf.concat(all_embeddings, 1)
        u_g_embeddings, i_g_embeddings = tf.split(all_embeddings, [self.n_users, self.n_items], 0)
        return u_g_embeddings, i_g_embeddings 
開發者ID:xiangwang1223,項目名稱:neural_graph_collaborative_filtering,代碼行數:23,代碼來源:NGCF.py

示例12: _create_gcmc_embed

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _create_gcmc_embed(self):
        A_fold_hat = self._split_A_hat(self.norm_adj)

        embeddings = tf.concat([self.weights['user_embedding'], self.weights['item_embedding']], axis=0)

        all_embeddings = []

        for k in range(0, self.n_layers):
            temp_embed = []
            for f in range(self.n_fold):
                temp_embed.append(tf.sparse_tensor_dense_matmul(A_fold_hat[f], embeddings))
            embeddings = tf.concat(temp_embed, 0)
            # convolutional layer.
            embeddings = tf.nn.leaky_relu(tf.matmul(embeddings, self.weights['W_gc_%d' % k]) + self.weights['b_gc_%d' % k])
            # dense layer.
            mlp_embeddings = tf.matmul(embeddings, self.weights['W_mlp_%d' %k]) + self.weights['b_mlp_%d' %k]
            mlp_embeddings = tf.nn.dropout(mlp_embeddings, 1 - self.mess_dropout[k])

            all_embeddings += [mlp_embeddings]
        all_embeddings = tf.concat(all_embeddings, 1)

        u_g_embeddings, i_g_embeddings = tf.split(all_embeddings, [self.n_users, self.n_items], 0)
        return u_g_embeddings, i_g_embeddings 
開發者ID:xiangwang1223,項目名稱:neural_graph_collaborative_filtering,代碼行數:25,代碼來源:NGCF.py

示例13: connect_representation_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def connect_representation_graph(self, tf_features, n_components, n_features, node_name_ending):

        # Infer ReLU layer size if necessary
        if self.relu_size is None:
            relu_size = 4 * n_components
        else:
            relu_size = self.relu_size

        # Create variable nodes
        tf_relu_weights = tf.Variable(tf.random_normal([n_features, relu_size], stddev=.5),
                                      name='relu_weights_{}'.format(node_name_ending))
        tf_relu_biases = tf.Variable(tf.zeros([1, relu_size]),
                                     name='relu_biases_{}'.format(node_name_ending))
        tf_linear_weights = tf.Variable(tf.random_normal([relu_size, n_components], stddev=.5),
                                        name='linear_weights_{}'.format(node_name_ending))

        # Create ReLU layer
        tf_relu = tf.nn.relu(tf.add(tf.sparse_tensor_dense_matmul(tf_features, tf_relu_weights),
                                    tf_relu_biases))
        tf_repr = tf.matmul(tf_relu, tf_linear_weights)

        # Return repr layer and variables
        return tf_repr, [tf_relu_weights, tf_linear_weights, tf_relu_biases] 
開發者ID:jfkirk,項目名稱:tensorrec,代碼行數:25,代碼來源:representation_graphs.py

示例14: project_biases

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def project_biases(tf_features, n_features):
    """
    Projects the biases from the feature space to calculate bias per actor
    :param tf_features:
    :param n_features:
    :return:
    """
    tf_feature_biases = tf.Variable(tf.zeros([n_features, 1]))

    # The reduce sum is to perform a rank reduction
    tf_projected_biases = tf.reduce_sum(
        tf.sparse_tensor_dense_matmul(tf_features, tf_feature_biases),
        axis=1
    )

    return tf_feature_biases, tf_projected_biases 
開發者ID:jfkirk,項目名稱:tensorrec,代碼行數:18,代碼來源:recommendation_graphs.py

示例15: _call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_tensor_dense_matmul [as 別名]
def _call(self, inputs):
        # vecs: input feature of the current layer. 
        # adj_partition_list: the row partitions of the full graph adj 
        #       (only used in full-batch evaluation on the val/test sets)
        vecs, adj_norm, len_feat, adj_partition_list, _ = inputs
        vecs = tf.nn.dropout(vecs, 1-self.dropout)
        vecs_hop = [tf.identity(vecs) for o in range(self.order+1)]
        for o in range(self.order):
            for a in range(o+1):
                ans1 = tf.sparse_tensor_dense_matmul(adj_norm,vecs_hop[o+1])
                ans_partition = [tf.sparse_tensor_dense_matmul(adj,vecs_hop[o+1]) for adj in adj_partition_list]
                ans2 = tf.concat(ans_partition,0)
                vecs_hop[o+1]=tf.cond(self.is_train,lambda: tf.identity(ans1),lambda: tf.identity(ans2))
        vecs_hop = [self._F_nonlinear(v,o) for o,v in enumerate(vecs_hop)]    
        if self.aggr == 'mean':
            ret = vecs_hop[0]
            for o in range(len(vecs_hop)-1):
                ret += vecs_hop[o+1]
        elif self.aggr == 'concat':
            ret = tf.concat(vecs_hop,axis=1)
        else:
            raise NotImplementedError
        return ret 
開發者ID:GraphSAINT,項目名稱:GraphSAINT,代碼行數:25,代碼來源:layers.py


注:本文中的tensorflow.sparse_tensor_dense_matmul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。