當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sparse_segment_sum方法代碼示例

本文整理匯總了Python中tensorflow.sparse_segment_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_segment_sum方法的具體用法?Python tensorflow.sparse_segment_sum怎麽用?Python tensorflow.sparse_segment_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sparse_segment_sum方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_SparseSegmentSum

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def test_SparseSegmentSum(self):
        t = tf.sparse_segment_sum(self.random(4, 3, 2), [0, 2, 3], [0, 1, 1])
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:5,代碼來源:ops.py

示例2: testValues

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testValues(self):
    dtypes = [tf.float32,
              tf.float64,
              tf.int64,
              tf.int32]

    mean_dtypes = [tf.float32,
                   tf.float64]

    # Each item is np_op1, np_op2, tf_op
    ops_list = [(np.add, None, tf.sparse_segment_sum),
                (self._mean_cum_op, self._mean_reduce_op,
                 tf.sparse_segment_mean)]

    n = 400
    shape = [n, 2]
    segment_indices = []
    for i in range(20):
      for _ in range(i + 1):
        segment_indices.append(i)
    num_indices = len(segment_indices)
    for dtype in dtypes:
      with self.test_session(use_gpu=False):
        tf_indices, np_indices, tf_x, np_x = self._sparse_input(shape,
                                                                num_indices,
                                                                dtype=dtype)
        for np_op1, np_op2, tf_op in ops_list:
          if tf_op == tf.sparse_segment_mean and dtype not in mean_dtypes:
            continue
          np_ans = self._sparseSegmentReduce(np_x, np_indices, segment_indices,
                                             np_op1, np_op2)
          s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
          tf_ans = s.eval()
          self._assertAllClose(segment_indices, np_ans, tf_ans)
          # NOTE(mrry): The static shape inference that computes
          # `tf_ans.shape` can only infer that sizes from dimension 1
          # onwards, because the size of dimension 0 is data-dependent
          # and may therefore vary dynamically.
          self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:41,代碼來源:segment_reduction_ops_test.py

示例3: testValid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testValid(self):
    # Baseline for the test*Invalid* methods below.
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 1, 2, 2]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例4: testIndicesInvalid1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testIndicesInvalid1(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 1, 2, 2]
    tf_indices = [8, -1, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError(
            r"indices\[1\] == -1 out of range \[0, 10\)"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:segment_reduction_ops_test.py

示例5: testIndicesInvalid2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testIndicesInvalid2(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 1, 2, 2]
    tf_indices = [8, 3, 0, 10]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError(
            r"indices\[3\] == 10 out of range \[0, 10\)"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:segment_reduction_ops_test.py

示例6: testSegmentsInvalid1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid1(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 2, 2, 2]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError("segment ids are not increasing by 1"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例7: testSegmentsInvalid3

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid3(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 1, 2, 0]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError(
            r"Segment id 1 out of range \[0, 1\), probably because "
            "'segment_ids' input is not sorted"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:segment_reduction_ops_test.py

示例8: testSegmentsInvalid4

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid4(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [-1, 0, 1, 1]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError("segment ids do not start at 0"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例9: testSegmentsInvalid5

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid5(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [1, 2, 2, 2]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError("segment ids do not start at 0"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例10: testSegmentsInvalid6

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid6(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 0, 0, -1]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError("segment ids must be >= 0"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例11: testSegmentsInvalid7

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def testSegmentsInvalid7(self):
    tf_x, _ = self._input([10, 4], dtype=tf.float32)
    ops_list = [tf.sparse_segment_sum, tf.sparse_segment_mean]
    segment_indices = [0, 0, 0, -2]
    tf_indices = [8, 3, 0, 9]
    with self.test_session(use_gpu=False):
      for tf_op in ops_list:
        s = tf_op(data=tf_x, indices=tf_indices, segment_ids=segment_indices)
        with self.assertRaisesOpError("segment ids must be >= 0"):
          s.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:segment_reduction_ops_test.py

示例12: _calc_output

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def _calc_output(self):
        self.E = self.F = self.S = 0

        for i, item in enumerate(self.parent.inputs['atom_types']):
            zero_cond = tf.equal(tf.reduce_sum(self.next_elem['N_'+item]), 0)

            self.E += tf.cond(zero_cond,
                              lambda: tf.cast(0., tf.float64),
                              lambda: tf.sparse_segment_sum(self.ys[item], self.next_elem['sparse_indices_'+item], self.next_elem['seg_id_'+item],
                                            num_segments=self.next_elem['num_seg'])[1:])

            if self.inputs['use_force']:
                tmp_force = self.next_elem['dx_'+item] * \
                            tf.expand_dims(\
                                tf.expand_dims(self.dys[item], axis=2),
                                axis=3)
                tmp_force = tf.reduce_sum(\
                                tf.sparse_segment_sum(tmp_force, self.next_elem['sparse_indices_'+item], self.next_elem['seg_id_'+item],
                                                      num_segments=self.next_elem['num_seg'])[1:],
                                axis=1)
                self.F -= tf.cond(zero_cond,
                                  lambda: tf.cast(0., tf.float64),
                                  lambda: tf.dynamic_partition(tf.reshape(tmp_force, [-1,3]),
                                                               self.next_elem['partition'], 2)[1])

            if self.inputs['use_stress']:
                tmp_stress = self.next_elem['da_'+item] * \
                             tf.expand_dims(\
                                 tf.expand_dims(self.dys[item], axis=2),
                                     axis=3)
                tmp_stress = tf.cond(zero_cond,
                                     lambda: tf.cast(0., tf.float64) * tmp_stress,
                                     lambda: tf.sparse_segment_sum(tmp_stress, self.next_elem['sparse_indices_'+item], self.next_elem['seg_id_'+item],
                                                                num_segments=self.next_elem['num_seg'])[1:])
                self.S -= tf.reduce_sum(tmp_stress, axis=[1,2])/units.GPa*10 
開發者ID:MDIL-SNU,項目名稱:SIMPLE-NN,代碼行數:37,代碼來源:neural_network.py

示例13: _get_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_segment_sum [as 別名]
def _get_loss(self, use_gdf=False, atomic_weights=None):
        if self.inputs['E_loss'] == 1:
            self.e_loss = tf.square((self.next_elem['E'] - self.E) / self.next_elem['tot_num']) * self.next_elem['tot_num']
        elif self.inputs['E_loss'] == 2:
            self.e_loss = tf.square(self.next_elem['E'] - self.E)
        else:
            self.e_loss = tf.square((self.next_elem['E'] - self.E) / self.next_elem['tot_num'])

        self.sw_e_loss = self.e_loss * self.next_elem['struct_weight']
        self.e_loss = tf.reshape(self.e_loss, [-1])
        self.str_e_loss = tf.unsorted_segment_mean(self.e_loss, self.next_elem['struct_ind'], tf.size(self.next_elem['struct_type_set']))
        self.str_e_loss = tf.reshape(self.str_e_loss, [-1])
        self.e_loss = tf.reduce_mean(self.e_loss)
        self.sw_e_loss = tf.reduce_mean(self.sw_e_loss)
        self.total_loss = self.sw_e_loss * self.energy_coeff

        self.str_num_batch_atom = tf.reshape(tf.unsorted_segment_sum(self.next_elem['tot_num'], self.next_elem['struct_ind'], tf.size(self.next_elem['struct_type_set'])), [-1])
        if self.inputs['use_force']:
            self.f_loss = tf.reshape(tf.square(self.next_elem['F'] - self.F), [-1, 3])
            ind = tf.reshape(repeat(self.next_elem['struct_ind'],
                         tf.cast(tf.reshape(self.next_elem['tot_num'], shape=[-1]), tf.int32)), [-1])
            self.str_f_loss = tf.unsorted_segment_mean(self.f_loss, ind, tf.size(self.next_elem['struct_type_set']))
            self.str_f_loss = tf.reduce_mean(self.str_f_loss, axis=1)
            if self.parent.descriptor.inputs['atomic_weights']['type'] is not None:
                self.aw_f_loss = self.f_loss * self.next_elem['atomic_weights']

                if self.inputs['F_loss'] == 1:
                    self.f_loss = tf.reduce_mean(self.f_loss)
                    self.aw_f_loss = tf.reduce_mean(self.aw_f_loss)
                else:
                    self.f_loss = tf.reduce_mean(tf.sparse_segment_sum(self.f_loss, self.next_elem['sparse_indices_'], self.next_elem['seg_id_'],
                                                 num_segments=self.next_elem['num_seg'])[1:])
                    self.aw_f_loss = tf.reduce_mean(tf.sparse_segment_sum(self.aw_f_loss, self.next_elem['sparse_indices_'], self.next_elem['seg_id_'],
                                                    num_segments=self.next_elem['num_seg'])[1:])

                self.total_loss += self.aw_f_loss * self.force_coeff
            else:
                if self.inputs['F_loss'] == 1:
                    self.f_loss = tf.reduce_mean(self.f_loss)
                else:
                    self.f_loss = tf.reduce_mean(tf.sparse_segment_sum(self.f_loss, self.next_elem['sparse_indices_'], self.next_elem['seg_id_'],
                                                 num_segments=self.next_elem['num_seg'])[1:])
                self.total_loss += self.f_loss * self.force_coeff

        if self.inputs['use_stress']:
            self.ax_s_loss = tf.square(self.next_elem['S'] - self.S)
            self.s_loss = tf.reduce_mean(self.ax_s_loss, axis=1, keepdims=True)
            self.sw_s_loss = self.s_loss * self.next_elem['struct_weight']
            self.s_loss = tf.reshape(self.s_loss,[-1])
            self.str_s_loss = tf.unsorted_segment_mean(self.s_loss, self.next_elem['struct_ind'], tf.size(self.next_elem['struct_type_set']))
            self.str_s_loss = tf.reshape(self.str_s_loss, [-1])
            self.s_loss = tf.reduce_mean(self.s_loss)
            self.sw_s_loss = tf.reduce_mean(self.sw_s_loss)
            self.total_loss += self.sw_s_loss * self.stress_coeff

        if self.inputs['regularization']['type'] is not None:
            # FIXME: regularization_loss, which is float32, is casted into float64.
            self.total_loss += tf.cast(tf.losses.get_regularization_loss(), tf.float64) 
開發者ID:MDIL-SNU,項目名稱:SIMPLE-NN,代碼行數:60,代碼來源:neural_network.py


注:本文中的tensorflow.sparse_segment_sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。