當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sparse_reorder方法代碼示例

本文整理匯總了Python中tensorflow.sparse_reorder方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_reorder方法的具體用法?Python tensorflow.sparse_reorder怎麽用?Python tensorflow.sparse_reorder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sparse_reorder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_architecture

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def get_architecture():
    inputs_ph = tf.placeholder(
        dtype=tf.float32, shape=[None, FLAGS.features_dim], name="features_")
    support_ph = tf.sparse_placeholder(
        dtype=tf.float32, shape=[None, None], name="support_")

    tf.logging.info("Reordering indices of support - this is extremely "
                    "important as sparse operations assume sparse indices have "
                    "been ordered.")
    support_reorder = tf.sparse_reorder(support_ph)

    rgat_layer = RGAT(units=FLAGS.units, relations=FLAGS.relations)

    outputs = rgat_layer(inputs=inputs_ph, support=support_reorder)

    return inputs_ph, support_ph, outputs 
開發者ID:babylonhealth,項目名稱:rgat,代碼行數:18,代碼來源:example_static.py

示例2: init_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def init_placeholders(self):
        if self.input_type == 'dense':
            self.train_x = tf.placeholder(tf.float32, shape=[None, self.n_features], name='x')
        else:
            with tf.name_scope('sparse_placeholders') as scope:
                self.raw_indices = tf.placeholder(tf.int64, shape=[None, 2], name='raw_indices')
                self.raw_values = tf.placeholder(tf.float32, shape=[None], name='raw_data')
                self.raw_shape = tf.placeholder(tf.int64, shape=[2], name='raw_shape')
            # tf.sparse_reorder is not needed since scipy return COO in canonical order
            self.train_x = tf.SparseTensor(self.raw_indices, self.raw_values, self.raw_shape)
        self.train_y = tf.placeholder(tf.float32, shape=[None], name='Y') 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:13,代碼來源:core.py

示例3: _generate_sketch_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def _generate_sketch_matrix(rand_h, rand_s, output_dim):
    """
    Return a sparse matrix used for tensor sketch operation in compact bilinear
    pooling

    Args:
        rand_h: an 1D numpy array containing indices in interval `[0, output_dim)`.
        rand_s: an 1D numpy array of 1 and -1, having the same shape as `rand_h`.
        output_dim: the output dimensions of compact bilinear pooling.

    Returns:
        a sparse matrix of shape [input_dim, output_dim] for tensor sketch.
    """

    # Generate a sparse matrix for tensor count sketch
    rand_h = rand_h.astype(np.int64)
    rand_s = rand_s.astype(np.float32)
    assert(rand_h.ndim==1 and rand_s.ndim==1 and len(rand_h)==len(rand_s))
    assert(np.all(rand_h >= 0) and np.all(rand_h < output_dim))

    input_dim = len(rand_h)
    indices = np.concatenate((np.arange(input_dim)[..., np.newaxis],
                              rand_h[..., np.newaxis]), axis=1)
    sparse_sketch_matrix = tf.sparse_reorder(
        tf.SparseTensor(indices, rand_s, [input_dim, output_dim]))
    return sparse_sketch_matrix 
開發者ID:pengzhou1108,項目名稱:RGB-N,代碼行數:28,代碼來源:compact_bilinear_pooling.py

示例4: testAlreadyInOrder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def testAlreadyInOrder(self):
    with self.test_session(use_gpu=False) as sess:
      input_val = self._SparseTensorValue_5x6(np.arange(6))
      sp_output = tf.sparse_reorder(input_val)

      output_val = sess.run(sp_output)
      self.assertAllEqual(output_val.indices, input_val.indices)
      self.assertAllEqual(output_val.values, input_val.values)
      self.assertAllEqual(output_val.shape, input_val.shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:sparse_reorder_op_test.py

示例5: testFeedAlreadyInOrder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def testFeedAlreadyInOrder(self):
    with self.test_session(use_gpu=False) as sess:
      sp_input = self._SparseTensorPlaceholder()
      input_val = self._SparseTensorValue_5x6(np.arange(6))
      sp_output = tf.sparse_reorder(sp_input)

      output_val = sess.run(sp_output, {sp_input: input_val})
      self.assertAllEqual(output_val.indices, input_val.indices)
      self.assertAllEqual(output_val.values, input_val.values)
      self.assertAllEqual(output_val.shape, input_val.shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:sparse_reorder_op_test.py

示例6: testOutOfOrder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def testOutOfOrder(self):
    expected_output_val = self._SparseTensorValue_5x6(np.arange(6))
    with self.test_session(use_gpu=False) as sess:
      for _ in range(5):  # To test various random permutations
        input_val = self._SparseTensorValue_5x6(np.random.permutation(6))
        sp_output = tf.sparse_reorder(input_val)

        output_val = sess.run(sp_output)
        self.assertAllEqual(output_val.indices, expected_output_val.indices)
        self.assertAllEqual(output_val.values, expected_output_val.values)
        self.assertAllEqual(output_val.shape, expected_output_val.shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:sparse_reorder_op_test.py

示例7: testFeedOutOfOrder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def testFeedOutOfOrder(self):
    expected_output_val = self._SparseTensorValue_5x6(np.arange(6))
    with self.test_session(use_gpu=False) as sess:
      for _ in range(5):  # To test various random permutations
        sp_input = self._SparseTensorPlaceholder()
        input_val = self._SparseTensorValue_5x6(np.random.permutation(6))
        sp_output = tf.sparse_reorder(sp_input)

        output_val = sess.run(sp_output, {sp_input: input_val})
        self.assertAllEqual(output_val.indices, expected_output_val.indices)
        self.assertAllEqual(output_val.values, expected_output_val.values)
        self.assertAllEqual(output_val.shape, expected_output_val.shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:sparse_reorder_op_test.py

示例8: testGradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def testGradients(self):
    with self.test_session(use_gpu=False):
      for _ in range(5):  # To test various random permutations
        input_val = self._SparseTensorValue_5x6(np.random.permutation(6))
        sp_input = tf.SparseTensor(
            input_val.indices, input_val.values, input_val.shape)
        sp_output = tf.sparse_reorder(sp_input)

        err = tf.test.compute_gradient_error(
            sp_input.values,
            input_val.values.shape,
            sp_output.values,
            input_val.values.shape,
            x_init_value=input_val.values)
        self.assertLess(err, 1e-11) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:sparse_reorder_op_test.py

示例9: build_sparse_matrix_softmax

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def build_sparse_matrix_softmax(self, idx_non_zero_values, X, dense_shape_A):
        A = tf.SparseTensorValue(idx_non_zero_values, tf.squeeze(X), dense_shape_A)
        A = tf.sparse_reorder(A)  # n_edges x n_edges
        A = tf.sparse_softmax(A)

        return A 
開發者ID:LPDI-EPFL,項目名稱:masif,代碼行數:8,代碼來源:MaSIF_ligand.py

示例10: _build_sparse_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def _build_sparse_matrix(L):
        L = L.tocoo()
        indices = np.column_stack((L.row, L.col))
        L = tf.SparseTensor(indices, L.data, L.shape)
        return tf.sparse_reorder(L) 
開發者ID:liyaguang,項目名稱:DCRNN,代碼行數:7,代碼來源:dcrnn_cell.py

示例11: chebyshev5

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def chebyshev5(self, x, L, Fout, K):
        N, M, Fin = x.get_shape()
        N, M, Fin = int(N), int(M), int(Fin)
        # Rescale Laplacian and store as a TF sparse tensor. Copy to not modify the shared L.
        L = scipy.sparse.csr_matrix(L)
        L = graph.rescale_L(L, lmax=2)
        L = L.tocoo()
        indices = np.column_stack((L.row, L.col))
        L = tf.SparseTensor(indices, L.data, L.shape)
        L = tf.sparse_reorder(L)
        # Transform to Chebyshev basis
        x0 = tf.transpose(x, perm=[1, 2, 0])  # M x Fin x N
        x0 = tf.reshape(x0, [M, Fin*N])  # M x Fin*N
        x = tf.expand_dims(x0, 0)  # 1 x M x Fin*N
        def concat(x, x_):
            x_ = tf.expand_dims(x_, 0)  # 1 x M x Fin*N
            return tf.concat(0, [x, x_])  # K x M x Fin*N
        if K > 1:
            x1 = tf.sparse_tensor_dense_matmul(L, x0)
            x = concat(x, x1)
        for k in range(2, K):
            x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0  # M x Fin*N
            x = concat(x, x2)
            x0, x1 = x1, x2
        x = tf.reshape(x, [K, M, Fin, N])  # K x M x Fin x N
        x = tf.transpose(x, perm=[3,1,2,0])  # N x M x Fin x K
        x = tf.reshape(x, [N*M, Fin*K])  # N*M x Fin*K
        # Filter: Fin*Fout filters of order K, i.e. one filterbank per feature pair.
        W = self._weight_variable([Fin*K, Fout], regularization=False)
        x = tf.matmul(x, W)  # N*M x Fout
        return tf.reshape(x, [N, M, Fout])  # N x M x Fout 
開發者ID:sk1712,項目名稱:gcn_metric_learning,代碼行數:33,代碼來源:models_siamese.py

示例12: _generate_sketch_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def _generate_sketch_matrix(rand_h, rand_s, output_dim):
	"""
	Return a sparse matrix used for tensor sketch operation in compact bilinear
	pooling

	Args:
		rand_h: an 1D numpy array containing indices in interval `[0, output_dim)`.
		rand_s: an 1D numpy array of 1 and -1, having the same shape as `rand_h`.
		output_dim: the output dimensions of compact bilinear pooling.

	Returns:
		a sparse matrix of shape [input_dim, output_dim] for tensor sketch.
	"""

	# Generate a sparse matrix for tensor count sketch
	rand_h = rand_h.astype(np.int64)
	rand_s = rand_s.astype(np.float32)
	assert(rand_h.ndim==1 and rand_s.ndim==1 and len(rand_h)==len(rand_s))
	assert(np.all(rand_h >= 0) and np.all(rand_h < output_dim))

	input_dim = len(rand_h)
	indices = np.concatenate((np.arange(input_dim)[..., np.newaxis],
							  rand_h[..., np.newaxis]), axis=1)
	sparse_sketch_matrix = tf.sparse_reorder(
		tf.SparseTensor(indices, rand_s, [input_dim, output_dim]))
	return sparse_sketch_matrix 
開發者ID:JunweiLiang,項目名稱:FVTA_MemexQA,代碼行數:28,代碼來源:model_mcb.py

示例13: sparse_transpose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def sparse_transpose(sp_input):
    transposed_indices = tf.reverse(tf.cast(sp_input.indices, tf.int32), [False, True])
    transposed_values = sp_input.values
    transposed_shape = tf.reverse(tf.cast(sp_input.shape, tf.int32), [True])
    sp_output = tf.SparseTensor(tf.cast(transposed_indices, tf.int64), transposed_values, tf.cast(transposed_shape, tf.int64))
    sp_output = tf.sparse_reorder(sp_output)
    return sp_output 
開發者ID:uclnlp,項目名稱:pycodesuggest,代碼行數:9,代碼來源:tfutils.py

示例14: cheby_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def cheby_conv(x, L, lmax, feat_out, K, W):
    '''
    x : [batch_size, N_node, feat_in] - input of each time step
    nSample : number of samples = batch_size
    nNode : number of node in graph
    feat_in : number of input feature
    feat_out : number of output feature
    L : laplacian
    lmax : ?
    K : size of kernel(number of cheby coefficients)
    W : cheby_conv weight [K * feat_in, feat_out]
    '''
    nSample, nNode, feat_in = x.get_shape()
    nSample, nNode, feat_in = int(nSample), int(nNode), int(feat_in) 
    L = graph.rescale_L(L, lmax) #What is this operation?? --> rescale Laplacian
    L = L.tocoo() 
    
    indices = np.column_stack((L.row, L.col))
    L = tf.SparseTensor(indices, L.data, L.shape)
    L = tf.sparse_reorder(L)
    
    x0 = tf.transpose(x, perm=[1, 2, 0]) #change it to [nNode, feat_in, nSample]
    x0 = tf.reshape(x0, [nNode, feat_in*nSample])
    x = tf.expand_dims(x0, 0) # make it [1, nNode, feat_in*nSample]
    
    def concat(x, x_):
        x_ = tf.expand_dims(x_, 0)
        return tf.concat([x, x_], axis=0)
    
    if K > 1:
        x1 = tf.sparse_tensor_dense_matmul(L, x0)
        x = concat(x, x1)
        
    for k in range(2, K):
        x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0
        x = concat(x, x2)
        x0, x1 = x1, x2
        
    x = tf.reshape(x, [K, nNode, feat_in, nSample])
    x = tf.transpose(x, perm=[3,1,2,0])
    x = tf.reshape(x, [nSample*nNode, feat_in*K])
    
    x = tf.matmul(x, W) #No Bias term?? -> Yes
    out = tf.reshape(x, [nSample, nNode, feat_out])
    return out

# gconvLSTM 
開發者ID:youngjoo-epfl,項目名稱:gconvRNN,代碼行數:49,代碼來源:model.py

示例15: graph_conv_chebyshev

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reorder [as 別名]
def graph_conv_chebyshev(self, x, L, K, F_out):
        """
        Graph convolutional operation.
        """
        # K = Chebyshev polynomial order & support size
        # F_out = No. of output features (per vertex)
        # B = Batch size
        # V = No. of vertices
        # F_in = No. of input features (per vertex)
        B, V, F_in = x.get_shape()
        B, V, F_in = int(B), int(V), int(F_in)

        # Rescale Laplacian and store as a TF sparse tensor (copy to not modify the shared L)
        L = scipy.sparse.csr_matrix(L)
        L = graph.rescale_L(L, lmax=2)
        L = L.tocoo()
        indices = np.column_stack((L.row, L.col))
        L = tf.SparseTensor(indices, L.data, L.shape)
        L = tf.sparse_reorder(L)
        L = tf.cast(L, tf.float32)

        # Transform to Chebyshev basis
        x0 = tf.transpose(x, perm=[1, 2, 0])     # V x F_in x B
        x0 = tf.reshape(x0, [V, F_in * B])       # V x F_in*B
        x = tf.expand_dims(x0, 0)                # 1 x V x F_in*B

        def concat(x, x_):
            x_ = tf.expand_dims(x_, 0)           # 1 x V x F_in*B
            return tf.concat([x, x_], axis=0)    # K x V x F_in*B
        if K > 1:
            x1 = tf.sparse_tensor_dense_matmul(L, x0)
            x = concat(x, x1)
        for k in range(2, K):
            x2 = 2 * tf.sparse_tensor_dense_matmul(L, x1) - x0  # V x F_in*B
            x = concat(x, x2)
            x0, x1 = x1, x2
        x = tf.reshape(x, [K, V, F_in, B])       # K x V x F_in x B
        x = tf.transpose(x, perm=[3, 1, 2, 0])   # B x V x F_in x K
        x = tf.reshape(x, [B * V, F_in * K])     # B*V x F_in*K

        # Compose linearly F_in features to get F_out features
        W = tf.Variable(tf.truncated_normal([F_in * K, F_out], stddev=0.1), name="W")
        x = tf.matmul(x, W)                      # B*V x F_out
        x = tf.reshape(x, [B, V, F_out])         # B x V x F_out

        return x 
開發者ID:SuyashLakhotia,項目名稱:TextCategorization,代碼行數:48,代碼來源:graph_cnn.py


注:本文中的tensorflow.sparse_reorder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。