當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sparse_reduce_sum方法代碼示例

本文整理匯總了Python中tensorflow.sparse_reduce_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_reduce_sum方法的具體用法?Python tensorflow.sparse_reduce_sum怎麽用?Python tensorflow.sparse_reduce_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sparse_reduce_sum方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: count_nonzero_wrapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def count_nonzero_wrapper(X, optype):
    """Wrapper for handling sparse and dense versions of `tf.count_nonzero`.

    Parameters
    ----------
    X : tf.Tensor (N, K)
    optype : str, {'dense', 'sparse'}

    Returns
    -------
    tf.Tensor (1,K)
    """
    with tf.name_scope('count_nonzero_wrapper') as scope:
        if optype == 'dense':
            return tf.count_nonzero(X, axis=0, keep_dims=True)
        elif optype == 'sparse':
            indicator_X = tf.SparseTensor(X.indices, tf.ones_like(X.values), X.dense_shape)
            return tf.sparse_reduce_sum(indicator_X, axis=0, keep_dims=True)
        else:
            raise NameError('Unknown input type in count_nonzero_wrapper') 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:22,代碼來源:utils.py

示例2: _loss_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def _loss_op(self):
        '''Operator to compute the loss for the model.
        This method should not be directly called the variables outside the class.
        Not we do not need to initialise the loss as zero for each batch as process the entire data in just one batch.'''

        complete_loss = tf.nn.weighted_cross_entropy_with_logits(
                            targets = self.labels,
                            logits = self.outputs,
                            pos_weight=self.positive_sample_weight
                        )

        def _compute_masked_loss(complete_loss):
            '''Method to compute the masked loss'''
            normalized_mask = self.mask / tf.sparse_reduce_sum(self.mask)
            complete_loss = tf.multiply(complete_loss, tf.sparse_tensor_to_dense(normalized_mask))
            return tf.reduce_sum(complete_loss)
            # the sparse_tensor_to_dense would be the bottleneck step and should be replaced by something more efficient

        complete_loss = tf.cond(tf.equal(self.mode, TRAIN),
                                true_fn=lambda : tf.reduce_mean(complete_loss),
                                false_fn=lambda : _compute_masked_loss(complete_loss))


        return complete_loss * self.normalisation_constant 
開發者ID:shagunsodhani,項目名稱:pregel,代碼行數:26,代碼來源:base_model.py

示例3: _accuracy_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def _accuracy_op(self):
        '''Operator to compute the accuracy for the model.
        This method should not be directly called the variables outside the class.'''

        correct_predictions = tf.cast(tf.equal(self.predictions,
                                       self.labels), dtype=tf.float32)

        def _compute_masked_accuracy(correct_predictions):
            '''Method to compute the masked loss'''
            normalized_mask = self.mask / tf.sparse_reduce_sum(self.mask)
            correct_predictions = tf.multiply(correct_predictions, tf.sparse_tensor_to_dense(normalized_mask))
            return tf.reduce_sum(correct_predictions, name="accuracy_op")

        accuracy = tf.cond(tf.equal(self.mode, TRAIN),
                                true_fn=lambda: tf.reduce_mean(correct_predictions, name="accuracy_op"),
                                false_fn=lambda: _compute_masked_accuracy(correct_predictions))

        return accuracy 
開發者ID:shagunsodhani,項目名稱:pregel,代碼行數:20,代碼來源:base_model.py

示例4: weighted_margin_rank_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def weighted_margin_rank_batch(self, tf_prediction_serial, tf_interactions, tf_sample_predictions, tf_n_items,
                                   tf_n_sampled_items):
        positive_interaction_mask = tf.greater(tf_interactions.values, 0.0)
        positive_interaction_indices = tf.boolean_mask(tf_interactions.indices,
                                                       positive_interaction_mask)
        positive_interaction_values = tf.boolean_mask(tf_interactions.values,
                                                      positive_interaction_mask)

        positive_interactions = tf.SparseTensor(indices=positive_interaction_indices,
                                                values=positive_interaction_values,
                                                dense_shape=tf_interactions.dense_shape)
        listening_sum_per_item = tf.sparse_reduce_sum(positive_interactions, axis=0)
        gathered_sums = tf.gather(params=listening_sum_per_item,
                                  indices=tf.transpose(positive_interaction_indices)[1])

        # [ n_positive_interactions ]
        positive_predictions = tf.boolean_mask(tf_prediction_serial,
                                               positive_interaction_mask)

        n_items = tf.cast(tf_n_items, dtype=tf.float32)
        n_sampled_items = tf.cast(tf_n_sampled_items, dtype=tf.float32)

        # [ n_positive_interactions, n_sampled_items ]
        mapped_predictions_sample_per_interaction = tf.gather(params=tf_sample_predictions,
                                                              indices=tf.transpose(positive_interaction_indices)[0])

        # [ n_positive_interactions, n_sampled_items ]
        summation_term = tf.maximum(1.0
                                    - tf.expand_dims(positive_predictions, axis=1)
                                    + mapped_predictions_sample_per_interaction,
                                    0.0)

        # [ n_positive_interactions ]
        sampled_margin_rank = ((n_items / n_sampled_items)
                               * tf.reduce_sum(summation_term, axis=1)
                               * positive_interaction_values / gathered_sums)

        loss = tf.log(sampled_margin_rank + 1.0)
        return loss 
開發者ID:jfkirk,項目名稱:tensorrec,代碼行數:41,代碼來源:loss_graphs.py

示例5: text_to_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def text_to_labels(self,
                     text,
                     return_dense=True,
                     pad_value=-1,
                     return_lengths=False):
    """Convert text strings to label sequences.
    Args:
      text: ascii encoded string tensor with shape [batch_size]
      dense: whether to return dense labels
      pad_value: Value used to pad labels to the same length.
      return_lengths: if True, also return text lengths
    Returns:
      labels: sparse or dense tensor of labels
    """
    batch_size = tf.shape(text)[0]
    chars = tf.string_split(text, delimiter='')

    labels_sp = tf.SparseTensor(
      chars.indices,
      self._char_to_label_table.lookup(chars.values),
      chars.dense_shape
    )

    if return_dense:
      labels = tf.sparse_tensor_to_dense(labels_sp, default_value=pad_value)
    else:
      labels = labels_sp

    if return_lengths:
      text_lengths = tf.sparse_reduce_sum(
        tf.SparseTensor(
          chars.indices,
          tf.fill([tf.shape(chars.indices)[0]], 1),
          chars.dense_shape
        ),
        axis=1
      )
      text_lengths.set_shape([None])
      return labels, text_lengths
    else:
      return labels 
開發者ID:bgshih,項目名稱:aster,代碼行數:43,代碼來源:label_map.py

示例6: gather_forced_att_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def gather_forced_att_logits(encoder_input_symbols, encoder_decoder_vocab_map, 
                             att_logit, batch_size, attn_length, 
                             target_vocab_size):
  """Gathers attention weights as logits for forced attention."""
  flat_input_symbols = tf.reshape(encoder_input_symbols, [-1])
  flat_label_symbols = tf.gather(encoder_decoder_vocab_map,
      flat_input_symbols)
  flat_att_logits = tf.reshape(att_logit, [-1])

  flat_range = tf.to_int64(tf.range(tf.shape(flat_label_symbols)[0]))
  batch_inds = tf.floordiv(flat_range, attn_length)
  position_inds = tf.mod(flat_range, attn_length)
  attn_vocab_inds = tf.transpose(tf.pack(
      [batch_inds, position_inds, tf.to_int64(flat_label_symbols)]))
 
  # Exclude indexes of entries with flat_label_symbols[i] = -1.
  included_flat_indexes = tf.reshape(tf.where(tf.not_equal(
      flat_label_symbols, -1)), [-1])
  included_attn_vocab_inds = tf.gather(attn_vocab_inds, 
      included_flat_indexes)
  included_flat_att_logits = tf.gather(flat_att_logits, 
      included_flat_indexes)

  sparse_shape = tf.to_int64(tf.pack(
      [batch_size, attn_length, target_vocab_size]))

  sparse_label_logits = tf.SparseTensor(included_attn_vocab_inds, 
      included_flat_att_logits, sparse_shape)
  forced_att_logit_sum = tf.sparse_reduce_sum(sparse_label_logits, [1])

  forced_att_logit = tf.reshape(forced_att_logit_sum, 
      [-1, target_vocab_size])

  return forced_att_logit 
開發者ID:janmbuys,項目名稱:DeepDeepParser,代碼行數:36,代碼來源:seq2seq_helpers.py

示例7: sparse_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def sparse_placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a sparse tensor that will be always fed.

  **Important**: This sparse tensor will produce an error if evaluated.
  Its value must be fed using the `feed_dict` optional argument to
  `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.sparse_placeholder(tf.float32)
  y = tf.sparse_reduce_sum(x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
    values = np.array([1.0, 2.0], dtype=np.float32)
    shape = np.array([7, 9, 2], dtype=np.int64)
    print(sess.run(y, feed_dict={
      x: tf.SparseTensorValue(indices, values, shape)}))  # Will succeed.
    print(sess.run(y, feed_dict={
      x: (indices, values, shape)}))  # Will succeed.

    sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape)
    sp_value = sp.eval(session=sess)
    print(sess.run(y, feed_dict={x: sp_value}))  # Will succeed.
  ```

  Args:
    dtype: The type of `values` elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a sparse tensor of any shape.
    name: A name for prefixing the operations (optional).

  Returns:
    A `SparseTensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  shape_name = (name + "/shape") if name is not None else None
  shape = _normalize_sparse_shape(shape, shape_name)
  if shape is None:
    shape = placeholder(dtypes.int64, shape=[None], name=shape_name)
  return sparse_tensor.SparseTensor(
      values=placeholder(
          dtype, shape=[None],
          name=(name + "/values") if name is not None else None),
      indices=placeholder(
          dtypes.int64, shape=[None, None],
          name=(name + "/indices") if name is not None else None),
      dense_shape=shape)
# pylint: enable=redefined-outer-name 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:54,代碼來源:array_ops.py

示例8: sparse_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def sparse_placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a sparse tensor that will be always fed.

  **Important**: This sparse tensor will produce an error if evaluated.
  Its value must be fed using the `feed_dict` optional argument to
  `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.sparse_placeholder(tf.float32)
  y = tf.sparse_reduce_sum(x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
    values = np.array([1.0, 2.0], dtype=np.float32)
    shape = np.array([7, 9, 2], dtype=np.int64)
    print(sess.run(y, feed_dict={
      x: tf.SparseTensorValue(indices, values, shape)}))  # Will succeed.
    print(sess.run(y, feed_dict={
      x: (indices, values, shape)}))  # Will succeed.

    sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape)
    sp_value = sp.eval(session)
    print(sess.run(y, feed_dict={x: sp_value}))  # Will succeed.
  ```

  Args:
    dtype: The type of `values` elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a sparse tensor of any shape.
    name: A name for prefixing the operations (optional).

  Returns:
    A `SparseTensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  shape_name = (name + "/shape") if name is not None else None
  shape = _normalize_sparse_shape(shape, shape_name)
  if shape is None:
    shape = placeholder(dtypes.int64, shape=[None], name=shape_name)
  return sparse_tensor.SparseTensor(
      values=placeholder(
          dtype, shape=[None],
          name=(name + "/values") if name is not None else None),
      indices=placeholder(
          dtypes.int64, shape=[None, None],
          name=(name + "/indices") if name is not None else None),
      dense_shape=shape)
# pylint: enable=redefined-outer-name 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:54,代碼來源:array_ops.py

示例9: sparse_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def sparse_placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a sparse tensor that will be always fed.

  **Important**: This sparse tensor will produce an error if evaluated.
  Its value must be fed using the `feed_dict` optional argument to
  `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.sparse_placeholder(tf.float32)
  y = tf.sparse_reduce_sum(x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
    values = np.array([1.0, 2.0], dtype=np.float32)
    shape = np.array([7, 9, 2], dtype=np.int64)
    print(sess.run(y, feed_dict={
      x: tf.SparseTensorValue(indices, values, shape)}))  # Will succeed.
    print(sess.run(y, feed_dict={
      x: (indices, values, shape)}))  # Will succeed.

    sp = tf.SparseTensor(indices=indices, values=values, shape=shape)
    sp_value = sp.eval(session)
    print(sess.run(y, feed_dict={x: sp_value}))  # Will succeed.
  ```

  Args:
    dtype: The type of `values` elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a sparse tensor of any shape.
    name: A name for prefixing the operations (optional).

  Returns:
    A `SparseTensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  shape_name = (name + "/shape") if name is not None else None
  shape = _normalize_sparse_shape(shape, shape_name)
  if shape is None:
    shape = placeholder(dtypes.int64, shape=[None], name=shape_name)
  return sparse_tensor.SparseTensor(
      values=placeholder(
          dtype, shape=[None],
          name=(name + "/values") if name is not None else None),
      indices=placeholder(
          dtypes.int64, shape=[None, None],
          name=(name + "/indices") if name is not None else None),
      shape=shape
  )
# pylint: enable=redefined-outer-name 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:55,代碼來源:array_ops.py

示例10: dice_coef_2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def dice_coef_2(ground_truth, prediction, weight_map=None):
    """
    Function to calculate the dice loss with the definition given in

        Milletari, F., Navab, N., & Ahmadi, S. A. (2016)
        V-net: Fully convolutional neural
        networks for volumetric medical image segmentation. 3DV 2016

    using a square in the denominator

    :param prediction: the logits
    :param ground_truth: the segmentation ground_truth
    :param weight_map:
    :return: the loss
    """
    ground_truth = tf.to_int64(ground_truth)
    prediction = tf.cast(prediction, tf.float32)
    ids = tf.range(tf.to_int64(tf.shape(ground_truth)[0]), dtype=tf.int64)
    ids = tf.stack([ids, ground_truth], axis=1)
    one_hot = tf.SparseTensor(
        indices=ids,
        values=tf.ones_like(ground_truth, dtype=tf.float32),
        dense_shape=tf.to_int64(tf.shape(prediction)))
    if weight_map is not None:
        n_classes = prediction.shape[1].value
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(weight_map_nclasses * tf.square(prediction),
                          reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot * weight_map_nclasses,
                                 reduction_axes=[0])
    else:
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(tf.square(prediction), reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
    epsilon_denominator = 0.00001

    dice_score = dice_numerator / (dice_denominator + epsilon_denominator)
    # dice_score.set_shape([n_classes])
    # minimising (1 - dice_coefficients)

    # return 1.0 - tf.reduce_mean(dice_score)
    return tf.reduce_mean(dice_score) 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:50,代碼來源:Prediction.py

示例11: dice_coef_2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def dice_coef_2(ground_truth, prediction, weight_map=None):
    """
    Function to calculate the dice loss with the definition given in

        Milletari, F., Navab, N., & Ahmadi, S. A. (2016)
        V-net: Fully convolutional neural
        networks for volumetric medical image segmentation. 3DV 2016

    using a square in the denominator

    :param prediction: the logits
    :param ground_truth: the segmentation ground_truth
    :param weight_map:
    :return: the loss
    """
    ground_truth = tf.to_int64(ground_truth)
    prediction = tf.cast(prediction, tf.float32)
    ids = tf.range(tf.to_int64(tf.shape(ground_truth)[0]), dtype=tf.int64)
    ids = tf.stack([ids, ground_truth], axis=1)
    one_hot = tf.SparseTensor(
        indices=ids,
        values=tf.ones_like(ground_truth, dtype=tf.float32),
        dense_shape=tf.to_int64(tf.shape(prediction)))
    if weight_map is not None:
        n_classes = prediction.shape[1].value
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(weight_map_nclasses * tf.square(prediction),
                          reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot * weight_map_nclasses,
                                 reduction_axes=[0])
    else:
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(tf.square(prediction), reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
    epsilon_denominator = 0.00001

    dice_score = dice_numerator / (dice_denominator + epsilon_denominator)
    # dice_score.set_shape([n_classes])
    # minimising (1 - dice_coefficients)

    #return 1.0 - tf.reduce_mean(dice_score)
    return tf.reduce_mean(dice_score) 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:50,代碼來源:3D_VResFCN_Upsampling_small.py

示例12: soft_ncut

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def soft_ncut(image, image_segment, image_weights):
    """
    Args:
        image: [B, H, W, C]
        image_segment: [B, H, W, K]
        image_weights: [B, H*W, H*W]
    Returns:
        Soft_Ncut: scalar
    """
    
    batch_size = tf.shape(image)[0]
    num_class = tf.shape(image_segment)[-1]
    image_shape = image.get_shape()
    weight_size = image_shape[1].value * image_shape[2].value
    image_segment = tf.transpose(image_segment, [0, 3, 1, 2]) # [B, K, H, W]
    image_segment = tf.reshape(image_segment, tf.stack([batch_size, num_class, weight_size])) # [B, K, H*W]
    
    # Dis-association
    # [B0, H*W, H*W] @ [B1, K1, H*W] contract on [[2],[2]] = [B0, H*W, B1, K1]
    W_Ak = sparse_tensor_dense_tensordot(image_weights, image_segment, axes=[[2],[2]])
    W_Ak = tf.transpose(W_Ak, [0,2,3,1]) # [B0, B1, K1, H*W]
    W_Ak = sycronize_axes(W_Ak, [0,1], tensor_dims=4) # [B0=B1, K1, H*W]
    # [B1, K1, H*W] @ [B2, K2, H*W] contract on [[2],[2]] = [B1, K1, B2, K2]
    dis_assoc = tf.tensordot(W_Ak, image_segment, axes=[[2],[2]])
    dis_assoc = sycronize_axes(dis_assoc, [0,2], tensor_dims=4) # [B1=B2, K1, K2]
    dis_assoc = sycronize_axes(dis_assoc, [1,2], tensor_dims=3) # [K1=K2, B1=B2]
    dis_assoc = tf.transpose(dis_assoc, [1,0]) # [B1=B2, K1=K2]
    dis_assoc = tf.identity(dis_assoc, name="dis_assoc")
    
    # Association
    # image_segment: [B0, K0, H*W]
    sum_W = tf.sparse_reduce_sum(image_weights,axis=2) # [B1, W*H]
    assoc = tf.tensordot(image_segment, sum_W, axes=[2,1]) # [B0, K0, B1]
    assoc = sycronize_axes(assoc, [0,2], tensor_dims=3) # [B0=B1, K0]
    assoc = tf.identity(assoc, name="assoc")
    
    utils.add_activation_summary(dis_assoc)
    utils.add_activation_summary(assoc)
    
    # Soft NCut
    eps = 1e-6
    soft_ncut = tf.cast(num_class, tf.float32) - \
                tf.reduce_sum((dis_assoc + eps) / (assoc + eps), axis=1)
    
    return soft_ncut 
開發者ID:lwchen6309,項目名稱:unsupervised-image-segmentation-by-WNet-with-NormalizedCut,代碼行數:47,代碼來源:soft_ncut.py

示例13: construct_computation_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def construct_computation_graph(self):

        batch_size = tf.shape(self.placeholder['clicked_feature'])[1]
        denseshape = tf.concat([tf.cast(tf.reshape(batch_size, [-1]), tf.int64), tf.reshape(self.placeholder['time'], [-1]), tf.reshape(self.placeholder['item_size'], [-1])], 0)

        # construct lstm
        cell = tf.contrib.rnn.BasicLSTMCell(self.rnn_hidden, state_is_tuple=True)
        initial_state = cell.zero_state(batch_size, tf.float32)
        rnn_outputs, rnn_states = tf.nn.dynamic_rnn(cell, self.placeholder['clicked_feature'], initial_state=initial_state, time_major=True)
        # rnn_outputs: (time, user=batch, rnn_hidden)
        # (1) output forward one-step (2) then transpose
        u_bar_feature = tf.concat([tf.zeros([1, batch_size, self.rnn_hidden], dtype=tf.float32), rnn_outputs], 0)
        u_bar_feature = tf.transpose(u_bar_feature, perm=[1, 0, 2])  # (user, time, rnn_hidden)
        # gather corresponding feature
        u_bar_feature_gather = tf.gather_nd(u_bar_feature, self.placeholder['ut_dispid_ut'])
        combine_feature = tf.concat([u_bar_feature_gather, self.placeholder['ut_dispid_feature']], axis=1)
        # indicate size
        combine_feature = tf.reshape(combine_feature, [-1, self.rnn_hidden + self.f_dim])

        # utility
        u_net = mlp(combine_feature, self.hidden_dims, 1, activation=tf.nn.elu, sd=1e-1, act_last=False)
        u_net = tf.reshape(u_net, [-1])

        click_u_tensor = tf.SparseTensor(self.placeholder['ut_clickid'], tf.gather(u_net, self.placeholder['click_sublist_index']), dense_shape=denseshape)
        disp_exp_u_tensor = tf.SparseTensor(self.placeholder['ut_dispid'], tf.exp(u_net), dense_shape=denseshape)  # (user, time, id)
        disp_sum_exp_u_tensor = tf.sparse_reduce_sum(disp_exp_u_tensor, axis=2)
        sum_click_u_tensor = tf.sparse_reduce_sum(click_u_tensor, axis=2)

        loss_tmp = - sum_click_u_tensor + tf.log(disp_sum_exp_u_tensor + 1)  # (user, time) loss
        loss_sum = tf.reduce_sum(tf.multiply(self.placeholder['ut_dense'], loss_tmp))
        event_cnt = tf.reduce_sum(self.placeholder['ut_dense'])
        loss = loss_sum / event_cnt

        dense_exp_disp_util = tf.sparse_tensor_to_dense(disp_exp_u_tensor, default_value=0.0, validate_indices=False)

        click_tensor = tf.sparse_to_dense(self.placeholder['ut_clickid'], denseshape, self.placeholder['ut_clickid_val'], default_value=0.0, validate_indices=False)
        argmax_click = tf.argmax(click_tensor, axis=2)
        argmax_disp = tf.argmax(dense_exp_disp_util, axis=2)

        top_2_disp = tf.nn.top_k(dense_exp_disp_util, k=2, sorted=False)[1]
        argmax_compare = tf.cast(tf.equal(argmax_click, argmax_disp), tf.float32)
        precision_1_sum = tf.reduce_sum(tf.multiply(self.placeholder['ut_dense'], argmax_compare))
        tmpshape = tf.concat([tf.cast(tf.reshape(batch_size, [-1]), tf.int64), tf.reshape(self.placeholder['time'], [-1]), tf.constant([1], dtype=tf.int64)], 0)
        top2_compare = tf.reduce_sum(tf.cast(tf.equal(tf.reshape(argmax_click, tmpshape), tf.cast(top_2_disp, tf.int64)), tf.float32), axis=2)
        precision_2_sum = tf.reduce_sum(tf.multiply(self.placeholder['ut_dense'], top2_compare))
        precision_1 = precision_1_sum / event_cnt
        precision_2 = precision_2_sum / event_cnt

        return loss, precision_1, precision_2, loss_sum, precision_1_sum, precision_2_sum, event_cnt 
開發者ID:xinshi-chen,項目名稱:GenerativeAdversarialUserModel,代碼行數:51,代碼來源:utils.py

示例14: sparse_placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_reduce_sum [as 別名]
def sparse_placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a sparse tensor that will be always fed.

  **Important**: This sparse tensor will produce an error if evaluated.
  Its value must be fed using the `feed_dict` optional argument to
  `Session.run()`, `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.sparse_placeholder(tf.float32)
  y = tf.sparse_reduce_sum(x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64)
    values = np.array([1.0, 2.0], dtype=np.float32)
    shape = np.array([7, 9, 2], dtype=np.int64)
    print(sess.run(y, feed_dict={
      x: tf.SparseTensorValue(indices, values, shape)}))  # Will succeed.
    print(sess.run(y, feed_dict={
      x: (indices, values, shape)}))  # Will succeed.

    sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape)
    sp_value = sp.eval(session=sess)
    print(sess.run(y, feed_dict={x: sp_value}))  # Will succeed.
  ```

  Args:
    dtype: The type of `values` elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a sparse tensor of any shape.
    name: A name for prefixing the operations (optional).

  Returns:
    A `SparseTensor` that may be used as a handle for feeding a value, but not
    evaluated directly.
  """
  shape_name = (name + "/shape") if name is not None else None
  shape, rank = _normalize_sparse_shape(shape, shape_name)
  if shape is None:
    shape = placeholder(dtypes.int64, shape=[rank], name=shape_name)
  return sparse_tensor.SparseTensor(
      values=placeholder(
          dtype,
          shape=[None],
          name=(name + "/values") if name is not None else None),
      indices=placeholder(
          dtypes.int64, shape=[None, rank],
          name=(name + "/indices") if name is not None else None),
      dense_shape=shape)


# pylint: enable=redefined-outer-name 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:57,代碼來源:array_ops.py


注:本文中的tensorflow.sparse_reduce_sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。