當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sparse_placeholder方法代碼示例

本文整理匯總了Python中tensorflow.sparse_placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sparse_placeholder方法的具體用法?Python tensorflow.sparse_placeholder怎麽用?Python tensorflow.sparse_placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sparse_placeholder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def __init__(self, input_size, batch_size, data_generator_creator, max_steps=None):

    super().__init__(input_size)
    self.batch_size = batch_size
    self.data_generator_creator = data_generator_creator
    self.steps_left = max_steps

    with tf.device("/cpu:0"):
      # Define input and label placeholders
      # inputs is of dimension [batch_size, max_time, input_size]
      self.inputs = tf.placeholder(tf.float32, [batch_size, None, input_size], name='inputs')
      self.sequence_lengths = tf.placeholder(tf.int32, [batch_size], name='sequence_lengths')
      self.labels = tf.sparse_placeholder(tf.int32, name='labels')

      # Queue for inputs and labels
      self.queue = tf.FIFOQueue(dtypes=[tf.float32, tf.int32, tf.string],
                                capacity=100)

      # queues do not support sparse tensors yet, we need to serialize...
      serialized_labels = tf.serialize_many_sparse(self.labels)

      self.enqueue_op = self.queue.enqueue([self.inputs,
                                            self.sequence_lengths,
                                            serialized_labels]) 
開發者ID:timediv,項目名稱:speechT,代碼行數:26,代碼來源:speech_input.py

示例2: add_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def add_placeholders(self):
		"""
		Defines the placeholder required for the model
		"""

		self.input_x  		= tf.placeholder(tf.int32,   shape=[None, None],   name='input_data')		# Words in a document (batch_size x max_words)
		self.input_y 		= tf.placeholder(tf.int32,   shape=[None, None],   name='input_labels')		# Actual document creation year of the document

		self.x_len		= tf.placeholder(tf.int32,   shape=[None],         name='input_len')		# Number of words in each document in a batch
		self.et_idx 		= tf.placeholder(tf.int32,   shape=[None, None],   name='et_idx')		# Index of tokens which are events/time_expressions
		self.et_mask 		= tf.placeholder(tf.float32, shape=[None, None],   name='et_mask')

		# Array of batch_size number of dictionaries, where each dictionary is mapping of label to sparse_placeholder [Temporal graph]
		self.de_adj_mat	= [{lbl: tf.sparse_placeholder(tf.float32,  shape=[None, None]) for lbl in range(self.num_deLabel)}  for _ in range(self.p.batch_size)]

		# Array of batch_size number of dictionaries, where each dictionary is mapping of label to sparse_placeholder [Syntactic graph]
		self.et_adj_mat	= [{lbl: tf.sparse_placeholder(tf.float32,  shape=[None, None]) for lbl in range(self.num_etLabel)}  for _ in range(self.p.batch_size)]

		self.seq_len 		= tf.placeholder(tf.int32, shape=(), name='seq_len')				# Maximum number of words in documents of a batch
		self.max_et 		= tf.placeholder(tf.int32, shape=(), name='max_et')				# Maximum number of events/time_expressions in documents of a batch

		self.dropout 		= tf.placeholder_with_default(self.p.dropout, 	  shape=(), name='dropout')	# Dropout used in GCN Layer
		self.rec_dropout 	= tf.placeholder_with_default(self.p.rec_dropout, shape=(), name='rec_dropout')	# Dropout used in Bi-LSTM 
開發者ID:malllabiisc,項目名稱:NeuralDater,代碼行數:25,代碼來源:neural_dater.py

示例3: get_edit_distance

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def get_edit_distance(hyp_arr, truth_arr, normalize, level):
    ''' calculate edit distance
    This is very universal, both for cha-level and phn-level
    '''

    graph = tf.Graph()
    with graph.as_default():
        truth = tf.sparse_placeholder(tf.int32)
        hyp = tf.sparse_placeholder(tf.int32)
        editDist = tf.reduce_sum(tf.edit_distance(hyp, truth, normalize=normalize))

    with tf.Session(graph=graph) as session:
        truthTest = list_to_sparse_tensor(truth_arr, level)
        hypTest = list_to_sparse_tensor(hyp_arr, level)
        feedDict = {truth: truthTest, hyp: hypTest}
        dist = session.run(editDist, feed_dict=feedDict)
    return dist 
開發者ID:zzw922cn,項目名稱:Automatic_Speech_Recognition,代碼行數:19,代碼來源:utils.py

示例4: _create_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def _create_placeholders(self):
    """Create placeholders."""
    with tf.name_scope('input'):
      self.placeholders = {
          'adj_train':
              tf.sparse_placeholder(tf.float32),  # normalized
          'node_labels':
              tf.placeholder(tf.float32, shape=[None, self.n_hidden[-1]]),
          'node_mask':
              tf.placeholder(tf.float32, shape=[
                  None,
              ]),
          'is_training':
              tf.placeholder(tf.bool),
      }
      if self.sparse_features:
        self.placeholders['features'] = tf.sparse_placeholder(tf.float32)
      else:
        self.placeholders['features'] = tf.placeholder(
            tf.float32, shape=[None, self.input_dim]) 
開發者ID:google,項目名稱:gcnn-survey-paper,代碼行數:22,代碼來源:base_models.py

示例5: get_architecture

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def get_architecture():
    inputs_ph = tf.placeholder(
        dtype=tf.float32, shape=[None, FLAGS.features_dim], name="features_")
    support_ph = tf.sparse_placeholder(
        dtype=tf.float32, shape=[None, None], name="support_")

    tf.logging.info("Reordering indices of support - this is extremely "
                    "important as sparse operations assume sparse indices have "
                    "been ordered.")
    support_reorder = tf.sparse_reorder(support_ph)

    rgat_layer = RGAT(units=FLAGS.units, relations=FLAGS.relations)

    outputs = rgat_layer(inputs=inputs_ph, support=support_reorder)

    return inputs_ph, support_ph, outputs 
開發者ID:babylonhealth,項目名稱:rgat,代碼行數:18,代碼來源:example_static.py

示例6: build_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def build_placeholders(self):
        num_supports = 1
        self.placeholders = {
            'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
            'features': tf.sparse_placeholder(tf.float32, shape=tf.constant(self.features[2], dtype=tf.int64)),
            'labels': tf.placeholder(tf.float32, shape=(None, self.labels.shape[1])),
            'labels_mask': tf.placeholder(tf.int32),
            'dropout': tf.placeholder_with_default(0., shape=()),
            # helper variable for sparse dropout
            'num_features_nonzero': tf.placeholder(tf.int32)
        } 
開發者ID:thunlp,項目名稱:OpenNE,代碼行數:13,代碼來源:gcnAPI.py

示例7: _setup_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def _setup_variables(self):
        """
        Creating TensorFlow variables and  placeholders.
        """
        self.node_embedding = tf.random_uniform([self.node_count, self.args.node_embedding_dimensions], -1.0, 1.0)

        self.node_embedding = tf.Variable(self.node_embedding, dtype=tf.float32)

        self.feature_embedding = tf.random_uniform([self.feature_count, self.args.feature_embedding_dimensions], -1.0, 1.0)

        self.feature_embedding = tf.Variable(self.feature_embedding, dtype=tf.float32)

        self.combined_dimensions = self.args.node_embedding_dimensions + self.args.feature_embedding_dimensions

        self.noise_embedding = tf.Variable(tf.truncated_normal([self.node_count, self.combined_dimensions],
                                                               stddev=1.0/math.sqrt(self.combined_dimensions)),
                                                               dtype=tf.float32)

        self.noise_bias = tf.Variable(tf.zeros([self.node_count]),
                                      dtype=tf.float32)

        self.noise_bias = tf.Variable(tf.zeros([self.node_count]),
                                      dtype=tf.float32)

        self.left_nodes = tf.placeholder(tf.int32, shape=[None])

        self.node_features = tf.sparse_placeholder(tf.float32,
                                                   shape=[None, self.feature_count])

        self.right_nodes = tf.placeholder(tf.int32,
                                          shape=[None, 1]) 
開發者ID:benedekrozemberczki,項目名稱:ASNE,代碼行數:33,代碼來源:asne.py

示例8: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def __init__(self, input_dim=None, output_dim=1, init_path=None, opt_algo='gd', learning_rate=1e-2, l2_weight=0,
                 random_seed=None):
        Model.__init__(self)
        init_vars = [('w', [input_dim, output_dim], 'xavier', dtype),
                     ('b', [output_dim], 'zero', dtype)]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = tf.sparse_placeholder(dtype)
            self.y = tf.placeholder(dtype)
            self.vars = utils.init_var_map(init_vars, init_path)

            w = self.vars['w']
            b = self.vars['b']
            xw = tf.sparse_tensor_dense_matmul(self.X, w)
            logits = tf.reshape(xw + b, [-1])
            self.y_prob = tf.sigmoid(logits)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(labels=self.y, logits=logits)) + \
                        l2_weight * tf.nn.l2_loss(xw)
            self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess) 
開發者ID:gutouyu,項目名稱:ML_CIA,代碼行數:30,代碼來源:models.py

示例9: __setup_inductive

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def __setup_inductive(self, A, X, p_nodes):
        N = A.shape[0]
        nodes_rnd = np.random.permutation(N)
        n_hide = int(N * p_nodes)
        nodes_hide = nodes_rnd[:n_hide]

        A_hidden = A.copy().tolil()
        A_hidden[nodes_hide] = 0
        A_hidden[:, nodes_hide] = 0

        # additionally add any dangling nodes to the hidden ones since we can't learn from them
        nodes_dangling = np.where(A_hidden.sum(0).A1 + A_hidden.sum(1).A1 == 0)[0]
        if len(nodes_dangling) > 0:
            nodes_hide = np.concatenate((nodes_hide, nodes_dangling))
        nodes_keep = np.setdiff1d(np.arange(N), nodes_hide)

        self.X = tf.sparse_placeholder(tf.float32)
        self.feed_dict = {self.X: sparse_feeder(X[nodes_keep])}

        self.ind_pairs = batch_pairs_sample(A, nodes_hide)
        self.ind_ground_truth = A[self.ind_pairs[:, 0], self.ind_pairs[:, 1]].A1
        self.ind_feed_dict = {self.X: sparse_feeder(X)}

        A = A[nodes_keep][:, nodes_keep]

        return A 
開發者ID:abojchevski,項目名稱:graph2gauss,代碼行數:28,代碼來源:model.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def __init__(self, input_dim=None, output_dim=1, factor_order=10, init_path=None, opt_algo='gd', learning_rate=1e-2,
                 l2_w=0, l2_v=0, random_seed=None):
        Model.__init__(self)
        init_vars = [('w', [input_dim, output_dim], 'xavier', dtype),
                     ('v', [input_dim, factor_order], 'xavier', dtype),
                     ('b', [output_dim], 'zero', dtype)]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None: 
                tf.set_random_seed(random_seed)
            self.X = tf.sparse_placeholder(dtype)
            self.y = tf.placeholder(dtype)
            self.vars = utils.init_var_map(init_vars, init_path)

            X_square = tf.SparseTensor(self.X.indices, tf.square(self.X.values), tf.to_int64(tf.shape(self.X)))
            xv = tf.square(tf.sparse_tensor_dense_matmul(self.X, self.vars['v']))
            p = 0.5 * tf.reshape(
                tf.reduce_sum(xv - tf.sparse_tensor_dense_matmul(X_square, tf.square(self.vars['v'])), 1),
                [-1, output_dim])
            xw = tf.sparse_tensor_dense_matmul(self.X, self.vars['w'])
            logits = tf.reshape(xw + self.vars['b'] + p, [-1])
            self.y_prob = tf.sigmoid(logits)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=self.y)) + \
                        l2_w * tf.nn.l2_loss(xw) + \
                        l2_v * tf.nn.l2_loss(xv)
            self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess) 
開發者ID:wyl6,項目名稱:Recommender-Systems-Samples,代碼行數:35,代碼來源:models.py

示例11: placeholder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    """Instantiates a placeholder tensor and returns it.

    # Arguments
        shape: Shape of the placeholder
            (integer tuple, may include `None` entries).
        ndim: Number of axes of the tensor.
            At least one of {`shape`, `ndim`} must be specified.
            If both are specified, `shape` is used.
        dtype: Placeholder type.
        sparse: Boolean, whether the placeholder should have a sparse type.
        name: Optional name string for the placeholder.

    # Returns
        Tensor instance (with Keras metadata included).

    # Examples
    ```python
        >>> from keras import backend as K
        >>> input_ph = K.placeholder(shape=(2, 4, 5))
        >>> input_ph._keras_shape
        (2, 4, 5)
        >>> input_ph
        <tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32>
    ```
    """
    if dtype is None:
        dtype = floatx()
    if not shape:
        if ndim:
            shape = tuple([None for _ in range(ndim)])
    if sparse:
        x = tf.sparse_placeholder(dtype, shape=shape, name=name)
    else:
        x = tf.placeholder(dtype, shape=shape, name=name)
    x._keras_shape = shape
    x._uses_learning_phase = False
    return x 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:40,代碼來源:tensorflow_backend.py

示例12: add_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def add_placeholders(self):
        # input tensor for log filter or MFCC features
        self.input_tensor = tf.placeholder( tf.float32,
                                          [None, None, self.n_dim],
                                          name='input')
        self.text = tf.sparse_placeholder(tf.int32, name='text')
        self.seq_length = tf.placeholder(tf.int32, [None], name='seq_length')
        self.keep_dropout = tf.placeholder(tf.float32) 
開發者ID:Pelhans,項目名稱:ZASR_tensorflow,代碼行數:10,代碼來源:init_model.py

示例13: load_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def load_model(self, model: str, model_path: str, max_seq_length: int):
        spm_path_info = None
        g = tf.Graph()
        with g.as_default():
            hub_module = hub.Module(model_path)
            if model == 'use_transformer_lite':
                self.input_placeholder = tf.sparse_placeholder(tf.int64, shape=[None, None])
                self.use_outputs = hub_module(
                    inputs=dict(
                        values=self.input_placeholder.values,
                        indices=self.input_placeholder.indices,
                        dense_shape=self.input_placeholder.dense_shape)
                )
                spm_path_info = hub_module(signature="spm_path")
            else:
                self.sentences = tf.placeholder(tf.string, shape=[None])
                self.use_outputs = hub_module(self.sentences, as_dict=True)
            init_op = tf.group([tf.global_variables_initializer(), tf.tables_initializer()])

        g.finalize()
        self.sess = tf.Session(graph=g)
        self.sess.run(init_op)

        if model == 'use_transformer_lite':
            spm_path = self.sess.run(spm_path_info)
            self.sp_model.Load(spm_path)

        self.model_name = model
        self.max_seq_length = max_seq_length 
開發者ID:amansrivastava17,項目名稱:embedding-as-service,代碼行數:31,代碼來源:__init__.py

示例14: construct_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def construct_placeholders(num_classes):
    placeholders = {
        'labels': tf.placeholder(DTYPE, shape=(None, num_classes), name='labels'),
        'node_subgraph': tf.placeholder(tf.int32, shape=(None), name='node_subgraph'),
        'dropout': tf.placeholder(DTYPE, shape=(None), name='dropout'),
        'adj_subgraph' : tf.sparse_placeholder(DTYPE,name='adj_subgraph',shape=(None,None)),
        'adj_subgraph_0' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_0'),
        'adj_subgraph_1' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_1'),
        'adj_subgraph_2' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_2'),
        'adj_subgraph_3' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_3'),
        'adj_subgraph_4' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_4'),
        'adj_subgraph_5' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_5'),
        'adj_subgraph_6' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_6'),
        'adj_subgraph_7' : tf.sparse_placeholder(DTYPE,name='adj_subgraph_7'),
        'dim0_adj_sub' : tf.placeholder(tf.int64,shape=(None),name='dim0_adj_sub'),
        'norm_loss': tf.placeholder(DTYPE,shape=(None),name='norm_loss'),
        'is_train': tf.placeholder(tf.bool, shape=(None), name='is_train')
    }
    return placeholders





#########
# TRAIN #
######### 
開發者ID:GraphSAINT,項目名稱:GraphSAINT,代碼行數:29,代碼來源:train.py

示例15: setup_network_and_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sparse_placeholder [as 別名]
def setup_network_and_graph(self):
        # e.g: log filter bank or MFCC features
        # shape = [batch_size, max_stepsize, n_input + (2 * n_input * n_context)]
        # the batch_size and max_stepsize can vary along each step
        self.input_tensor = tf.placeholder(
            tf.float32, [None, None, self.n_input + (2 * self.n_input * self.n_context)], name='input')

        # Use sparse_placeholder; will generate a SparseTensor, required by ctc_loss op.
        self.targets = tf.sparse_placeholder(tf.int32, name='targets')
        # 1d array of size [batch_size]
        self.seq_length = tf.placeholder(tf.int32, [None], name='seq_length') 
開發者ID:mrubash1,項目名稱:RNN-Tutorial,代碼行數:13,代碼來源:tf_train_ctc.py


注:本文中的tensorflow.sparse_placeholder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。