本文整理匯總了Python中tensorflow.space_to_depth方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.space_to_depth方法的具體用法?Python tensorflow.space_to_depth怎麽用?Python tensorflow.space_to_depth使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.space_to_depth方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: yolo_body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V2 model CNN body in Keras."""
darknet = Model(inputs, darknet_body()(inputs))
conv13 = darknet.get_layer('batchnormalization_13').output
conv20 = compose(
DarknetConv2D_BN_Leaky(1024, 3, 3),
DarknetConv2D_BN_Leaky(1024, 3, 3))(darknet.output)
# TODO: Allow Keras Lambda to use func arguments for output_shape?
conv13_reshaped = Lambda(
space_to_depth_x2,
output_shape=space_to_depth_x2_output_shape,
name='space_to_depth')(conv13)
# Concat conv13 with conv20.
x = merge([conv13_reshaped, conv20], mode='concat')
x = DarknetConv2D_BN_Leaky(1024, 3, 3)(x)
x = DarknetConv2D(num_anchors * (num_classes + 5), 1, 1)(x)
return Model(inputs, x)
示例2: yolo_body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
"""Create YOLO_V2 model CNN body in Keras."""
darknet = Model(inputs, darknet_body()(inputs))
conv20 = compose(
DarknetConv2D_BN_Leaky(1024, (3, 3)),
DarknetConv2D_BN_Leaky(1024, (3, 3)))(darknet.output)
conv13 = darknet.layers[43].output
conv21 = DarknetConv2D_BN_Leaky(64, (1, 1))(conv13)
# TODO: Allow Keras Lambda to use func arguments for output_shape?
conv21_reshaped = Lambda(
space_to_depth_x2,
output_shape=space_to_depth_x2_output_shape,
name='space_to_depth')(conv21)
x = concatenate([conv21_reshaped, conv20])
x = DarknetConv2D_BN_Leaky(1024, (3, 3))(x)
x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x)
return Model(inputs, x)
示例3: _checkGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _checkGrad(self, x, block_size):
assert 4 == x.ndim
with self.test_session(use_gpu=True):
tf_x = tf.convert_to_tensor(x)
tf_y = tf.space_to_depth(tf_x, block_size)
epsilon = 1e-2
((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
tf_x,
x.shape,
tf_y,
tf_y.get_shape().as_list(),
x_init_value=x,
delta=epsilon)
self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
# Tests a gradient for space_to_depth of x which is a four dimensional
# tensor of shape [b, h * block_size, w * block_size, d].
示例4: build_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def build_graph(self):
super(FFDNet, self).build_graph() # build inputs placeholder
with tf.variable_scope(self.name):
# build layers
inputs = self.inputs_preproc[-1] / 255
if self.training:
sigma = tf.random_uniform((), maxval=self.sigma / 255)
inputs += tf.random_normal(tf.shape(inputs)) * sigma
else:
sigma = self.sigma / 255
inputs = tf.space_to_depth(inputs, block_size=self.space_down)
noise_map = tf.ones_like(inputs)[..., 0:1] * sigma
x = tf.concat([inputs, noise_map], axis=-1)
x = self.relu_conv2d(x, 64, 3)
for i in range(1, self.layers - 1):
x = self.bn_relu_conv2d(x, 64, 3, use_bias=False)
# the last layer w/o BN and ReLU
x = self.conv2d(x, self.channel * self.space_down ** 2, 3)
denoised = tf.depth_to_space(x, block_size=self.space_down)
self.outputs.append(denoised * 255)
示例5: compute_repeatable_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def compute_repeatable_loss(pred_d_heatmaps, trans_heatmaps, block_size, name='REPEAT-LOSS'):
'''
Args:
pred_d_heatmaps: [batch, height/N, width/N, N**2+1]
trans_heatmaps: [batch, height, width, 1]
'''
with tf.name_scope(name):
trans_d_heatmaps = tf.space_to_depth(trans_heatmaps, block_size)
kp_bg_map = tf.reduce_sum(trans_d_heatmaps, axis=-1, keep_dims=True)
kp_bg_map = tf.cast(tf.less(kp_bg_map, 1.0), tf.float32)
kp_fg_map = 1.0 - tf.squeeze(kp_bg_map, axis=-1)
trans_d_heatmaps = tf.concat([trans_d_heatmaps, kp_bg_map], axis=3) # add BG channels
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=trans_d_heatmaps,
logits=pred_d_heatmaps) # shape = [batch,height/N,width/N]
kp_count = tf.maximum(1.0, tf.reduce_sum(kp_fg_map))
repeat_loss = tf.div(tf.reduce_sum(kp_fg_map * xentropy), kp_count)
return repeat_loss
示例6: detector_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def detector_loss(inp, out, config):
if 'keypoint_map' in inp: # hard labels
labels = tf.to_float(inp['keypoint_map'][..., tf.newaxis]) # for GPU
labels = tf.space_to_depth(labels, config['local']['detector_grid'])
shape = tf.concat([tf.shape(labels)[:3], [1]], axis=0)
labels = tf.argmax(tf.concat([2*labels, tf.ones(shape)], 3), axis=3)
with tf.device('/cpu:0'):
d = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=out['logits'])
mask = None
elif 'dense_scores' in inp: # soft labels
d = tf.nn.softmax_cross_entropy_with_logits_v2(
labels=inp['dense_scores'], logits=out['logits'], dim=-1)
mask = inp.get('dense_scores_valid_mask', None)
else:
raise ValueError
if mask is not None:
mask = tf.to_float(mask)
d = (tf.reduce_sum(d * mask, axis=[1, 2])
/ tf.reduce_sum(mask, axis=[1, 2]))
else:
d = tf.reduce_mean(d, axis=[1, 2])
return d
示例7: space_to_depth_x2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def space_to_depth_x2(x):
"""Thin wrapper for Tensorflow space_to_depth with block_size=2."""
# Import currently required to make Lambda work.
# See: https://github.com/fchollet/keras/issues/5088#issuecomment-273851273
import tensorflow as tf
return tf.space_to_depth(x, block_size=2)
示例8: space_to_depth_x2_output_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def space_to_depth_x2_output_shape(input_shape):
"""Determine space_to_depth output shape for block_size=2.
Note: For Lambda with TensorFlow backend, output shape may not be needed.
"""
return (input_shape[0], input_shape[1] // 2, input_shape[2] // 2, 4 *
input_shape[3]) if input_shape[1] else (input_shape[0], None, None,
4 * input_shape[3])
示例9: conv_pixel_shuffle_down
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def conv_pixel_shuffle_down(x, scale_factor=2, use_bias=True, sn=False, scope='pixel_shuffle'):
channel = x.get_shape()[-1] // (scale_factor ** 2)
x = conv(x, channel, kernel=1, stride=1, use_bias=use_bias, sn=sn, scope=scope)
x = tf.space_to_depth(x, block_size=scale_factor)
return x
示例10: _PDS
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _PDS(self, X, r):
X = tf.space_to_depth(X, r)
return X
示例11: extract_features
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
with slim.arg_scope(darknet.darknet_arg_scope(is_training = self._is_training)):
#with slim.arg_scope(darknet.darknet_arg_scope()):
with tf.variable_scope('darknet_19',
reuse=self._reuse_weights) as scope:
net, end_points = darknet.darknet_19_base(preprocessed_inputs,
scope='base')
net = slim.conv2d(net, 1024, [3, 3], scope='Conv2D_19')
net = slim.conv2d(net, 1024, [3, 3], scope='Conv2D_20')
scope_name = end_points['scope_name']
conv_13 = end_points[scope_name+'/Conv2D_13']
conv_21 = slim.conv2d(conv_13, 64, [1, 1], scope='Conv2D_21')
conv_21 = tf.space_to_depth(conv_21, block_size=2)
net = tf.concat([conv_21, net], axis=-1)
net = slim.conv2d(net, 1024, [3, 3], scope='Conv2D_22')
feature_map = net
return [feature_map]
示例12: _space_to_depth
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _space_to_depth(self, inputs=None, block_size=2, name=''):
if self.data_format != 'NHWC':
inputs = tf.transpose(inputs, perm=[self.data_format.find(d) for d in 'NHWC'])
output = tf.space_to_depth(inputs, block_size=block_size, name=name)
if self.data_format != 'NHWC':
output = tf.transpose(output, perm=['NHWC'.find(d) for d in self.data_format])
return output
示例13: _space_to_depth
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _space_to_depth(self, name, inputs=None, block_size=2):
output = tf.space_to_depth(inputs, block_size=block_size, name=name)
return output
示例14: _reorg
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _reorg(self, name, inputs, stride, data_format, use_space_to_depth=True, darknet_original=False):
with tf.name_scope(name):
# darknet original reorg layer is weird.
# As default we don't use darknet original reorg.
# See detail: https://github.com/LeapMind/lmnet/issues/16
if darknet_original:
# TODO(wakisaka): You can use only data_format == "NHWC", yet.
assert data_format == "NHWC"
input_shape = tf.shape(inputs)
# channel shape use static.
b, h, w, c = input_shape[0], input_shape[1], input_shape[2], inputs.get_shape().as_list()[3]
output_h = h // stride
output_w = w // stride
output_c = c * stride * stride
transpose_tensor = tf.transpose(inputs, [0, 3, 1, 2])
reshape_tensor = tf.reshape(transpose_tensor, [b, (c // (stride * stride)), h, stride, w, stride])
transpose_tensor = tf.transpose(reshape_tensor, [0, 3, 5, 1, 2, 4])
reshape_tensor = tf.reshape(transpose_tensor, [b, output_c, output_h, output_w])
transpose_tensor = tf.transpose(reshape_tensor, [0, 2, 3, 1])
outputs = tf.reshape(transpose_tensor, [b, output_h, output_w, output_c])
return outputs
else:
# tf.extract_image_patches() raise error with images_placeholder `None` shape as dynamic image.
# Github issue: https://github.com/leapmindadmin/lmnet/issues/17
# Currently, I didn't try to space_to_depth with images_placeholder `None` shape as dynamic image.
if use_space_to_depth:
outputs = tf.space_to_depth(inputs, stride, data_format=data_format)
return outputs
else:
# TODO(wakisaka): You can use only data_format == "NHWC", yet.
assert data_format == "NHWC"
ksize = [1, stride, stride, 1]
strides = [1, stride, stride, 1]
rates = [1, 1, 1, 1]
outputs = tf.extract_image_patches(inputs, ksize, strides, rates, "VALID")
return outputs
示例15: _space_to_depth
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import space_to_depth [as 別名]
def _space_to_depth(self, inputs=None, block_size=2, name=''):
if self.data_format != 'NHWC':
inputs = tf.transpose(inputs, perm=[self.data_format.find(d) for d in 'NHWC'])
output = tf.space_to_depth(inputs, block_size=block_size, name=name)
if self.data_format != 'NHWC':
output = tf.transpose(output, perm=['NHWC'.find(d) for d in self.data_format])
return output