當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.slim方法代碼示例

本文整理匯總了Python中tensorflow.slim方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.slim方法的具體用法?Python tensorflow.slim怎麽用?Python tensorflow.slim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.slim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _checkpoint_var_search

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def _checkpoint_var_search(self, checkpoint_path):
        reader = tf.train.NewCheckpointReader(checkpoint_path)
        saved_shapes = reader.get_variable_to_shape_map()
        model_names = tf.model_variables()  # Used by tf.slim layers
        if not len(tf.model_variables()):
            model_names = tf.global_variables()  # Fallback when slim is not used
        model_names = set([v.name.split(':')[0] for v in model_names])
        checkpoint_names = set(saved_shapes.keys())
        found_names = model_names & checkpoint_names
        missing_names = model_names - checkpoint_names
        shape_conflicts = set()
        restored = []
        with tf.variable_scope('', reuse=True):
            for name in found_names:
                # print(tf.global_variables())
                # print(name, name in model_names, name in checkpoint_names)
                var = tf.get_variable(name)
                var_shape = var.get_shape().as_list()
                if var_shape == saved_shapes[name]:
                    restored.append(var)
                else:
                    shape_conflicts.add(name)
        found_names -= shape_conflicts
        return (restored, sorted(found_names),
                sorted(missing_names), sorted(shape_conflicts)) 
開發者ID:ethz-asl,項目名稱:hierarchical_loc,代碼行數:27,代碼來源:base_model.py

示例2: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def main(_):
    util.check_tensorflow_version()

    dataset = ImagenetData(subset=FLAGS.subset)

    processor = ProcessorImagenet()
    processor.label_offset = FLAGS.label_offset

    feed = FeedImagesWithLabels(dataset=dataset, processor=processor)

    model_params = {
        'num_classes': feed.num_classes_for_network(),
        'network': FLAGS.network,
    }

    if FLAGS.my:
        # My variants of Resnet, Inception, and VGG networks
        model = ModelMySlim(params=model_params)
    else:
        # Google's tf.slim models
        model = ModelGoogleSlim(params=model_params)
        model.check_norm(processor.normalize)

    exec_train.train(feed=feed, model=model) 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:26,代碼來源:imagenet_train.py

示例3: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def main(_):
    util.check_tensorflow_version()

    dataset = ImagenetData(subset=FLAGS.subset)

    processor = ProcessorImagenet()
    processor.label_offset = FLAGS.label_offset

    feed = FeedImagesWithLabels(dataset=dataset, processor=processor)

    model_params = {
        'num_classes': feed.num_classes_for_network(),
        'network': FLAGS.network,
    }

    if FLAGS.my:
        # My variants of Resnet, Inception, and VGG networks
        model = ModelMySlim(params=model_params)
    else:
        # Google's tf.slim models
        model = ModelGoogleSlim(params=model_params)
        model.check_norm(processor.normalize)

    exec_eval.evaluate(feed=feed, model=model) 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:26,代碼來源:imagenet_eval.py

示例4: eval_stitch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def eval_stitch(gitapp: controller.GetInputTargetAndPredictedParameters):
  g = tf.Graph()
  with g.as_default():
    controller.setup_stitch(gitapp)

    summary_ops = tf.get_collection(tf.GraphKeys.SUMMARIES)
    input_summary_op = next(
        x for x in summary_ops if 'input_error_panel' in x.name)
    target_summary_op = next(
        x for x in summary_ops if 'target_error_panel' in x.name)

    log_entry_points(g)

    slim.evaluation.evaluation_loop(
        master=FLAGS.master,
        num_evals=0,
        checkpoint_dir=train_directory(),
        logdir=output_directory(),
        # Merge the summaries to keep the graph state in sync.
        summary_op=tf.summary.merge([input_summary_op, target_summary_op]),
        eval_interval_secs=FLAGS.eval_interval_secs) 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:23,代碼來源:launch.py

示例5: export

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def export(gitapp: controller.GetInputTargetAndPredictedParameters):
  g = tf.Graph()
  with g.as_default():
    assert FLAGS.metric == METRIC_STITCH

    controller.setup_stitch(gitapp)

    log_entry_points(g)

    signature_map = dict(
        [(o.name, o) for o in g.get_operations() if 'entry_point' in o.name])

    logging.info('Exporting checkpoint at %s to %s', FLAGS.restore_directory,
                 FLAGS.export_directory)
    slim.export_for_serving(
        g,
        checkpoint_dir=FLAGS.restore_directory,
        export_dir=FLAGS.export_directory,
        generic_signature_tensor_map=signature_map) 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:21,代碼來源:launch.py

示例6: test_slim_stacked_conv2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def test_slim_stacked_conv2d(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None,16,16,3],
          name='test_slim_stacked_conv2d/input')
      with slim.arg_scope([slim.conv2d], padding='SAME',
          weights_initializer=tf.truncated_normal_initializer(stddev=0.3),
          weights_regularizer=slim.l2_regularizer(0.0005)):
        net = slim.conv2d(inputs, 2, [5, 5], scope='conv1')
        net = slim.conv2d(net, 4, [3, 3], padding='VALID', scope='conv2')
        net = slim.conv2d(net, 8, [3, 3], scope='conv3')

    output_name = [net.op.name]
    self._test_tf_model(graph,
        {"test_slim_stacked_conv2d/input:0":[1,16,16,3]},
        output_name, delta=1e-2) 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:18,代碼來源:test_tf_converter.py

示例7: test_slim_convnet

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def test_slim_convnet(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None,8,8,3],
          name='test_slim_convnet/input')
      with slim.arg_scope([slim.conv2d, slim.fully_connected],
          weights_initializer=tf.truncated_normal_initializer(0.0, 0.2),
          weights_regularizer=slim.l2_regularizer(0.0005)):
        net = slim.conv2d(inputs, 2, [3, 3], scope='conv1')
        net = slim.flatten(net, scope='flatten3')
        net = slim.fully_connected(net, 6, scope='fc6')

    output_name = [net.op.name]
    self._test_tf_model(graph,
        {"test_slim_convnet/input:0":[1,8,8,3]},
        output_name, delta=1e-2) 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:18,代碼來源:test_tf_converter.py

示例8: test_slim_lenet

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def test_slim_lenet(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None,28,28,1],
          name='test_slim_lenet/input')
      net = slim.conv2d(inputs, 4, [5,5], scope='conv1')
      net = slim.avg_pool2d(net, [2,2], scope='pool1')
      net = slim.conv2d(net, 6, [5,5], scope='conv2')
      net = slim.max_pool2d(net, [2,2], scope='pool2')
      net = slim.flatten(net, scope='flatten3')
      net = slim.fully_connected(net, 10, scope='fc4')
      net = slim.fully_connected(net, 10, activation_fn=None, scope='fc5')

    output_name = [net.op.name]
    self._test_tf_model(graph,
        {"test_slim_lenet/input:0":[1,28,28,1]},
        output_name, delta=1e-2) 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:19,代碼來源:test_tf_converter.py

示例9: test_slim_dilated_depthwise_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def test_slim_dilated_depthwise_conv(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None,16,16,3],
          name='test_slim_separable_conv2d/input')
      with slim.arg_scope([slim.separable_conv2d], padding='SAME',
          weights_initializer=tf.truncated_normal_initializer(stddev=0.3)):
        net = slim.separable_conv2d(inputs,
            num_outputs=None,
            stride=1,
            depth_multiplier=1,
            kernel_size=[3, 3],
            rate=2,
            scope='conv1')

    output_name = [net.op.name]
    self._test_tf_model(graph,
        {"test_slim_separable_conv2d/input:0":[1,16,16,3]},
        output_name, delta=1e-2) 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:21,代碼來源:test_tf_converter.py

示例10: test_custom_tile

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def test_custom_tile(self):
    graph = tf.Graph()
    with graph.as_default() as g:
      inputs = tf.placeholder(tf.float32, shape=[None, 8], name='input')
      with slim.arg_scope([slim.fully_connected],
                          weights_initializer=tf.truncated_normal_initializer(0.0, 0.2),
                          weights_regularizer=slim.l2_regularizer(0.0005)):
        y = slim.fully_connected(inputs, 10, scope='fc')
        y = slim.unit_norm(y, dim=1)

    output_name = [y.op.name]
    coreml_model = self._test_tf_model(graph,
                        {"input:0": [1, 8]},
                        output_name,
                        check_numerical_accuracy=False,
                        add_custom_layers=True)

    spec = coreml_model.get_spec()
    layers = spec.neuralNetwork.layers
    self.assertIsNotNone(layers[9].custom)
    self.assertEqual('Tile', layers[9].custom.className) 
開發者ID:tf-coreml,項目名稱:tf-coreml,代碼行數:23,代碼來源:test_tf_converter.py

示例11: _checkpoint_var_search

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def _checkpoint_var_search(self, checkpoint_path):
        reader = tf.train.NewCheckpointReader(checkpoint_path)
        saved_shapes = reader.get_variable_to_shape_map()
        model_names = tf.model_variables()  # Used by tf.slim layers
        if not len(tf.model_variables()):
            model_names = tf.global_variables()  # Fallback when slim is not used
        model_names = set([v.name.split(':')[0] for v in model_names])
        checkpoint_names = set(saved_shapes.keys())
        found_names = model_names & checkpoint_names
        missing_names = model_names - checkpoint_names
        shape_conflicts = set()
        restored = []
        with tf.variable_scope('', reuse=True):
            for name in found_names:
                var = tf.get_variable(name)
                var_shape = var.get_shape().as_list()
                if var_shape == saved_shapes[name]:
                    restored.append(var)
                else:
                    shape_conflicts.add(name)
        found_names -= shape_conflicts
        return (restored, sorted(found_names),
                sorted(missing_names), sorted(shape_conflicts)) 
開發者ID:ethz-asl,項目名稱:hfnet,代碼行數:25,代碼來源:base_model.py

示例12: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def main(_):
    util.check_tensorflow_version()

    dataset = ExampleData(subset='')

    processor = ProcessorImagenet()
    processor.output_offset = FLAGS.output_offset

    feed = FeedImagesWithLabels(dataset=dataset, processor=processor)

    model_params = {
        'num_classes': feed.num_classes_for_network(),
        'network': FLAGS.network,
    }
    if FLAGS.my:
        # My variants of Resnet, Inception, and VGG networks
        model = ModelMySlim(params=model_params)
    else:
        # Google's tf.slim models
        model = ModelGoogleSlim(params=model_params)
        model.check_norm(processor.normalize)

    output, num_entries = exec_predict.predict(feed, model)

    output_columns = ['Img']
    if FLAGS.output_prob:
        # Dump class probabilities to CSV file.
        class_labels = []
        for c in range(dataset.num_classes()):
            class_labels.append("c%s" % c)
        output_columns += class_labels
        output = np.vstack([np.column_stack([o[1], o[0]]) for o in output])
    else:
        # Dump class index to CSV file
        output_columns += ['Class']
        output = np.vstack([np.column_stack([o[1], np.argmax(o[0], axis=1)]) for o in output])

    df = pd.DataFrame(output, columns=output_columns)
    df.Img = df.Img.apply(lambda x: os.path.basename(x.decode()))
    df.to_csv('./output.csv', index=False) 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:42,代碼來源:example_predict.py

示例13: _build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def _build(self, inputs, is_training=False):
        inputs = self.preprocess(inputs)
        with slim.arg_scope(self.arg_scope):
            net, end_points = self.network(is_training=is_training)(inputs)

            return {
                'net': net,
                'end_points': end_points,
            } 
開發者ID:Sargunan,項目名稱:Table-Detection-using-Deep-learning,代碼行數:11,代碼來源:base_network.py

示例14: setup_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def setup_metrics( inputs, model, cfg ):
    # predictions = model[ 'model' ].
    # Choose the metrics to compute:
    # names_to_values, names_to_updates = slim.metrics.aggregate_metric_map( {} )
    return  {}, {} 
開發者ID:StanfordVL,項目名稱:taskonomy,代碼行數:7,代碼來源:test.py

示例15: eval_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slim [as 別名]
def eval_loss(gitapp: controller.GetInputTargetAndPredictedParameters):
  g = tf.Graph()
  with g.as_default():
    total_loss_op, input_loss_lts, target_loss_lts = total_loss(gitapp)

    metric_names = ['total_loss']
    metric_values = [total_loss_op]
    for name, loss_lt in dict(input_loss_lts, **target_loss_lts).items():
      metric_names.append(name)
      metric_values.append(loss_lt.tensor)
    metric_names = ['metric/' + n for n in metric_names]
    metric_values = [metrics.streaming_mean(v) for v in metric_values]

    names_to_values, names_to_updates = metrics.aggregate_metric_map(
        dict(zip(metric_names, metric_values)))

    for name, value in names_to_values.iteritems():
      slim.summaries.add_scalar_summary(value, name, print_summary=True)

    log_entry_points(g)

    num_batches = FLAGS.metric_num_examples // gitapp.bp.size

    slim.evaluation.evaluation_loop(
        master=FLAGS.master,
        checkpoint_dir=train_directory(),
        logdir=output_directory(),
        num_evals=num_batches,
        eval_op=names_to_updates.values(),
        eval_interval_secs=FLAGS.eval_interval_secs) 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:32,代碼來源:launch.py


注:本文中的tensorflow.slim方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。