當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.slice方法代碼示例

本文整理匯總了Python中tensorflow.slice方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.slice方法的具體用法?Python tensorflow.slice怎麽用?Python tensorflow.slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.slice方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_fgm_gradient_max

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def test_fgm_gradient_max(self):
        input_dim = 2
        num_classes = 3
        batch_size = 4
        rng = np.random.RandomState([2017, 8, 23])
        x = tf.placeholder(tf.float32, [batch_size, input_dim])
        weights = tf.placeholder(tf.float32, [input_dim, num_classes])
        logits = tf.matmul(x, weights)
        probs = tf.nn.softmax(logits)
        adv_x = fgm(x, probs)
        random_example = rng.randint(batch_size)
        random_feature = rng.randint(input_dim)
        output = tf.slice(adv_x, [random_example, random_feature], [1, 1])
        dx, = tf.gradients(output, x)
        # The following line catches GitHub issue #243
        self.assertIsNotNone(dx)
        dx = self.sess.run(dx, feed_dict=random_feed_dict(rng, [x, weights]))
        ground_truth = np.zeros((batch_size, input_dim))
        ground_truth[random_example, random_feature] = 1.
        self.assertClose(dx, ground_truth) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:test_attacks_tf.py

示例2: _inv_preemphasis

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _inv_preemphasis(x):
    N = tf.shape(x)[0]
    i = tf.constant(0)
    W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)

    def condition(i, y):
        return tf.less(i, N)

    def body(i, y):
        tmp = tf.slice(x, [0], [i + 1])
        tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
        y = hparams.preemphasis * y + tmp
        i = tf.add(i, 1)
        return [i, y]

    final = tf.while_loop(condition, body, [i, W])

    y = final[1]

    return y 
開發者ID:candlewill,項目名稱:Griffin_lim,代碼行數:22,代碼來源:griffin_lim.py

示例3: compute_first_or_last

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def compute_first_or_last(self, select, first=True):
    #perform first ot last operation on row select with probabilistic row selection
    answer = tf.zeros_like(select)
    running_sum = tf.zeros([self.batch_size, 1], self.data_type)
    for i in range(self.max_elements):
      if (first):
        current = tf.slice(select, [0, i], [self.batch_size, 1])
      else:
        current = tf.slice(select, [0, self.max_elements - 1 - i],
                           [self.batch_size, 1])
      curr_prob = current * (1 - running_sum)
      curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
      running_sum += curr_prob
      temp_ans = []
      curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
      for i_ans in range(self.max_elements):
        if (not (first) and i_ans == self.max_elements - 1 - i):
          temp_ans.append(curr_prob)
        elif (first and i_ans == i):
          temp_ans.append(curr_prob)
        else:
          temp_ans.append(tf.zeros_like(curr_prob))
      temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
      answer += temp_ans
    return answer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例4: convert_network_state_tensorarray

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def convert_network_state_tensorarray(tensorarray):
  """Converts a source TensorArray to a source Tensor.

  Performs a permutation between the steps * [stride, D] shape of a
  source TensorArray and the (flattened) [stride * steps, D] shape of
  a source Tensor.

  The TensorArrays used during recurrence have an additional zeroth step that
  needs to be removed.

  Args:
    tensorarray: TensorArray object to be converted.

  Returns:
    Tensor object after conversion.
  """
  tensor = tensorarray.stack()  # Results in a [steps, stride, D] tensor.
  tensor = tf.slice(tensor, [1, 0, 0], [-1, -1, -1])  # Lop off the 0th step.
  tensor = tf.transpose(tensor, [1, 0, 2])  # Switch steps and stride.
  return tf.reshape(tensor, [-1, tf.shape(tensor)[2]]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:network_units.py

示例5: _AddOutputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _AddOutputs(self, prev_layer, out_dims, out_func, num_classes):
    """Adds the output layer and loss function.

    Args:
      prev_layer:  Output of last layer of main network.
      out_dims:    Number of output dimensions, 0, 1 or 2.
      out_func:    Output non-linearity. 's' or 'c'=softmax, 'l'=logistic.
      num_classes: Number of outputs/size of last output dimension.
    """
    height_in = shapes.tensor_dim(prev_layer, dim=1)
    logits, outputs = self._AddOutputLayer(prev_layer, out_dims, out_func,
                                           num_classes)
    if self.mode == 'train':
      # Setup loss for training.
      self.loss = self._AddLossFunction(logits, height_in, out_dims, out_func)
      tf.summary.scalar('loss', self.loss)
    elif out_dims == 0:
      # Be sure the labels match the output, even in eval mode.
      self.labels = tf.slice(self.labels, [0, 0], [-1, 1])
      self.labels = tf.reshape(self.labels, [-1])

    logging.info('Final output=%s', outputs)
    logging.info('Labels tensor=%s', self.labels)
    self.output = outputs 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:vgsl_model.py

示例6: _PadLabels2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _PadLabels2d(logits_size, labels):
  """Pads or slices the 2nd dimension of 2-d labels to match logits_size.

  Covers the case of 1-d softmax output, when labels is [batch, seq] and
  logits is [batch, seq, onehot]
  Args:
    logits_size: Tensor returned from tf.shape giving the target size.
    labels:      2-d, but not necessarily matching in size.

  Returns:
    labels: Resized by padding or clipping the last dimension to logits_size.
  """
  pad = logits_size - tf.shape(labels)[1]

  def _PadFn():
    return tf.pad(labels, [[0, 0], [0, pad]])

  def _SliceFn():
    return tf.slice(labels, [0, 0], [-1, logits_size])

  return tf.cond(tf.greater(pad, 0), _PadFn, _SliceFn) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:vgsl_model.py

示例7: expanded_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def expanded_shape(orig_shape, start_dim, num_dims):
  """Inserts multiple ones into a shape vector.

  Inserts an all-1 vector of length num_dims at position start_dim into a shape.
  Can be combined with tf.reshape to generalize tf.expand_dims.

  Args:
    orig_shape: the shape into which the all-1 vector is added (int32 vector)
    start_dim: insertion position (int scalar)
    num_dims: length of the inserted all-1 vector (int scalar)
  Returns:
    An int32 vector of length tf.size(orig_shape) + num_dims.
  """
  with tf.name_scope('ExpandedShape'):
    start_dim = tf.expand_dims(start_dim, 0)  # scalar to rank-1
    before = tf.slice(orig_shape, [0], start_dim)
    add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
    after = tf.slice(orig_shape, start_dim, [-1])
    new_shape = tf.concat([before, add_shape, after], 0)
    return new_shape 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:ops.py

示例8: combine

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def combine(self, expert_out, multiply_by_gates=True):
    """Sum together the expert output, weighted by the gates.

    The slice corresponding to a particular batch element `b` is computed
    as the sum over all experts `i` of the expert output, weighted by the
    corresponding gate values.  If `multiply_by_gates` is set to False, the
    gate values are ignored.

    Args:
      expert_out: a list of `num_experts` `Tensor`s, each with shape
        `[expert_batch_size_i, <extra_output_dims>]`.
      multiply_by_gates: a boolean

    Returns:
      a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
    """
    # see comments on convert_gradient_to_tensor
    stitched = common_layers.convert_gradient_to_tensor(
        tf.concat(expert_out, 0))
    if multiply_by_gates:
      stitched *= tf.expand_dims(self._nonzero_gates, 1)
    combined = tf.unsorted_segment_sum(stitched, self._batch_index,
                                       tf.shape(self._gates)[0])
    return combined 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:expert_utils.py

示例9: add_positional_embedding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def add_positional_embedding(x, max_length, name, positions=None):
  """Add positional embedding.

  Args:
    x: a Tensor with shape [batch, length, depth]
    max_length: an integer.  static maximum size of any dimension.
    name: a name for this layer.
    positions: an optional tensor with shape [batch, length]

  Returns:
    a Tensor the same shape as x.
  """
  _, length, depth = common_layers.shape_list(x)
  var = tf.cast(tf.get_variable(name, [max_length, depth]), x.dtype)
  if positions is None:
    sliced = tf.cond(
        tf.less(length, max_length),
        lambda: tf.slice(var, [0, 0], [length, -1]),
        lambda: tf.pad(var, [[0, length - max_length], [0, 0]]))
    return x + tf.expand_dims(sliced, 0)
  else:
    return x + tf.gather(var, tf.to_int32(positions)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_attention.py

示例10: _relative_position_to_absolute_position_masked

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _relative_position_to_absolute_position_masked(x):
  """Helper to dot_product_self_attention_relative_v2.

  Rearrange an attention logits or weights Tensor.

  The dimensions of the input represent:
  [batch, heads, query_position, memory_position - query_position + length - 1]

  The dimensions of the output represent:
  [batch, heads, query_position, memory_position]

  Only works with masked_attention.  Undefined behavior for regions of the
  input where memory_position > query_position.

  Args:
    x: a Tensor with shape [batch, heads, length, length]

  Returns:
    a Tensor with shape [batch, heads, length, length]
  """
  batch, heads, length, _ = common_layers.shape_list(x)
  x = tf.pad(x, [[0, 0], [0, 0], [0, 0], [1, 0]])
  x = tf.reshape(x, [batch, heads, 1 + length, length])
  x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1])
  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:common_attention.py

示例11: _absolute_position_to_relative_position_masked

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _absolute_position_to_relative_position_masked(x):
  """Helper to dot_product_self_attention_relative_v2.

  Rearrange an attention logits or weights Tensor.

  The dimensions of the input represent:
  [batch, heads, query_position, memory_position]

  The dimensions of the output represent:
  [batch, heads, query_position, memory_position - query_position + length - 1]

  Only works with masked_attention.  Undefined behavior for regions of the
  input where memory_position > query_position.

  Args:
    x: a Tensor with shape [batch, heads, length, length]

  Returns:
    a Tensor with shape [batch, heads, length, length]
  """
  batch, heads, length, _ = common_layers.shape_list(x)
  x = tf.pad(x, [[0, 0], [0, 0], [1, 0], [0, 0]])
  x = tf.reshape(x, [batch, heads, length, length + 1])
  x = tf.slice(x, [0, 0, 0, 1], [batch, heads, length, length])
  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:common_attention.py

示例12: get_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def get_loss(predicted_transformation, batch_size, template_pointclouds_pl, source_pointclouds_pl):
	with tf.variable_scope('loss') as LossEvaluation:
		predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
		predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])

		# with tf.variable_scope('quat_normalization') as norm:
		norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
		norm_predicted_quat = tf.sqrt(norm_predicted_quat)
		norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
		const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
		norm_predicted_quat = tf.add(norm_predicted_quat,const)
		predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)

		transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat,predicted_position)

		#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
		loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
	return loss 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:20,代碼來源:ipcr_model.py

示例13: get_loss_b

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def get_loss_b(self,predicted_transformation,batch_size,template_pointclouds_pl,source_pointclouds_pl):	
		with tf.variable_scope('loss') as LossEvaluation:
			predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
			predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])

			# with tf.variable_scope('quat_normalization') as norm:
			norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
			norm_predicted_quat = tf.sqrt(norm_predicted_quat)
			norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
			const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
			norm_predicted_quat = tf.add(norm_predicted_quat,const)
			predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)
	
			transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat, predicted_position)

			# Use 1024 Points to find loss.
			#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
			loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
			# loss = 0
		return loss 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:22,代碼來源:pcr_model.py

示例14: omniglot

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z 
開發者ID:hmishra2250,項目名稱:NTM-One-Shot-TF,代碼行數:27,代碼來源:TestUpd.py

示例15: _minibatch_subsample_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import slice [as 別名]
def _minibatch_subsample_fn(self, inputs):
    """Randomly samples anchors for one image.

    Args:
      inputs: a list of 2 inputs. First one is a tensor of shape [num_anchors,
        num_classes] indicating targets assigned to each anchor. Second one
        is a tensor of shape [num_anchors] indicating the class weight of each
        anchor.

    Returns:
      batch_sampled_indicator: bool tensor of shape [num_anchors] indicating
        whether the anchor should be selected for loss computation.
    """
    cls_targets, cls_weights = inputs
    if self._add_background_class:
      # Set background_class bits to 0 so that the positives_indicator
      # computation would not consider background class.
      background_class = tf.zeros_like(tf.slice(cls_targets, [0, 0], [-1, 1]))
      regular_class = tf.slice(cls_targets, [0, 1], [-1, -1])
      cls_targets = tf.concat([background_class, regular_class], 1)
    positives_indicator = tf.reduce_sum(cls_targets, axis=1)
    return self._random_example_sampler.subsample(
        tf.cast(cls_weights, tf.bool),
        batch_size=None,
        labels=tf.cast(positives_indicator, tf.bool)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:27,代碼來源:ssd_meta_arch.py


注:本文中的tensorflow.slice方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。