當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.sin方法代碼示例

本文整理匯總了Python中tensorflow.sin方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sin方法的具體用法?Python tensorflow.sin怎麽用?Python tensorflow.sin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.sin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_timing_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_layers.py

示例2: rotate_point_cloud_by_angle_y

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def rotate_point_cloud_by_angle_y(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[cosval, 0, sinval],
									[0, 1, 0],
									[-sinval, 0, cosval]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:21,代碼來源:helper.py

示例3: rotate_point_cloud_by_angle_x

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def rotate_point_cloud_by_angle_x(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[1, 0, 0],
									[0, cosval, -sinval],
									[0, sinval, cosval]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:21,代碼來源:helper.py

示例4: rotate_point_cloud_by_angle_z

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def rotate_point_cloud_by_angle_z(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[cosval, -sinval, 0],
									[sinval, cosval, 0],
									[0, 0, 1]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data

# Translate the data as per given translation vector. 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:23,代碼來源:helper.py

示例5: locationPE

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def locationPE(h, w, dim, outDim = -1, addBias = True):    
    x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
    y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
    i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)

    peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
    peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
    peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
    peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))

    peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
    peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
    peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
    peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1]) 

    grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
    dim *= 4
    
    if outDim > 0:
        grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
        dim = outDim

    return grid, dim 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:25,代碼來源:ops.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def __init__(self, position_size, hparams=None):
        EmbedderBase.__init__(self, hparams=hparams)

        dim = self._hparams.dim
        num_timescales = dim // 2
        min_timescale = self._hparams.min_timescale
        max_timescale = self._hparams.max_timescale

        positions = tf.to_float(tf.range(position_size, dtype=tf.int32))
        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (tf.to_float(num_timescales) - 1))
        inv_timescales = min_timescale * tf.exp(
            tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
        scaled_time = tf.expand_dims(positions, 1) \
            * tf.expand_dims(inv_timescales, 0)
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
        self.signal = signal 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:21,代碼來源:position_embedders.py

示例7: test_ODEbadprecision

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def test_ODEbadprecision(self):  # make sure float32 is not enough for very precise integration
        t = tf.constant(np.linspace(0, 10, 1000), dtype=tf.float32)
        # initial condition
        true_y0 = tf.constant([0., 5.], dtype=tf.float32)

        true_func = lambda y, t: np.sin(5*t)
        ode_func = lambda y, t: tf.cast(tf.stack([5*tf.cos(5*t), -25*tf.sin(5*t)]), tf.float32)
        true_y = odeint(ode_func, true_y0, t, method='dop853', precision=tf.float32)
        self.assertRaises(AssertionError, npt.assert_array_almost_equal, true_y.numpy()[:, 0], true_func(true_y0, t))

        true_y0_pretend_multidims = [[0., 5.]]  # to introduce a mix of list, np array, tensor to make sure no issue
        true_y_pretend_multidims = odeint(ode_func, true_y0_pretend_multidims, t, method='dop853', precision=tf.float32)

        # assert equal pretendinging multidim or not
        np.testing.assert_array_almost_equal(true_y_pretend_multidims[0], true_y)

        true_y0_multidims = tf.constant([[1., 2.], [0., 5.]], dtype=tf.float32)
        t = np.linspace(0, 10, 1000)
        true_y_multidims = odeint(ode_func, true_y0_multidims, t, method='dop853', precision=tf.float32)

        # assert equal in multidim or not
        np.testing.assert_array_almost_equal(true_y_multidims[1], true_y) 
開發者ID:henrysky,項目名稱:astroNN,代碼行數:24,代碼來源:test_neuralODE.py

示例8: gaussian

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def gaussian(config, gan, net):
    z_dim = net.get_shape().as_list()[-1]
    net = (net + 1) / 2

    if len(gan.ops.shape(net)) == 4:
        za = tf.slice(net, [0,0,0,0], [gan.batch_size(), -1, -1, z_dim//2])
        zb = tf.slice(net, [0,0,0,z_dim//2], [gan.batch_size(), -1, -1, z_dim//2])
    else:
        za = tf.slice(net, [0,0], [gan.batch_size(), z_dim//2])
        zb = tf.slice(net, [0,z_dim//2], [gan.batch_size(), z_dim//2])

    pi = np.pi
    ra = tf.sqrt(-2 * tf.log(za+TINY))*tf.cos(2*pi*zb)
    rb = tf.sqrt(-2 * tf.log(za+TINY))*tf.sin(2*pi*zb)

    return tf.reshape(tf.concat(axis=len(net.get_shape())-1, values=[ra, rb]), net.get_shape()) 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:18,代碼來源:uniform_distribution.py

示例9: batch_rodrigues

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def batch_rodrigues(theta, name=None):
    """
    Theta is N x 3
    """
    with tf.variable_scope(name, "batch_rodrigues", [theta]):
        batch_size = tf.shape(theta)[0]

        angle = tf.expand_dims(tf.norm(theta + 1e-8, axis=1), -1)
        r = tf.expand_dims(tf.div(theta, angle), -1)

        angle = tf.expand_dims(angle, -1)
        cos = tf.cos(angle)
        sin = tf.sin(angle)

        outer = tf.matmul(r, r, transpose_b=True, name="outer")

        eyes = tf.tile(tf.expand_dims(tf.eye(3), 0), [batch_size, 1, 1])
        R = cos * eyes + (1 - cos) * outer + sin * batch_skew(
            r, batch_size=batch_size)
        return R 
開發者ID:blzq,項目名稱:tf_smpl,代碼行數:22,代碼來源:batch_lbs.py

示例10: neural_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def neural_net(X, weights, biases):
    num_layers = len(weights) + 1
    H = X
    for l in range(0,num_layers-2):
        W = weights[l]
        b = biases[l]
        H = tf.sin(tf.add(tf.matmul(H, W), b))
    W = weights[-1]
    b = biases[-1]
    Y = tf.add(tf.matmul(H, W), b)
    return Y


###############################################################################
################################ DeepHPM Class ################################
############################################################################### 
開發者ID:maziarraissi,項目名稱:DeepHPMs,代碼行數:18,代碼來源:KS.py

示例11: add_timing_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def add_timing_signal(x, scope='', min_timescale=1.0, max_timescale=1.0e4):
        with tf.name_scope(scope, values=[x]):
            length = tf.shape(x)[1]
            channels = tf.shape(x)[2]
            position = tf.to_float(tf.range(length))
            num_timescales = channels // 2

            log_timescale_increment = (
                math.log(float(max_timescale) / float(min_timescale)) /
                (tf.to_float(num_timescales) - 1)
            )
            inv_timescales = min_timescale * tf.exp(
                tf.to_float(tf.range(num_timescales)) * -log_timescale_increment
            )

            scaled_time = (tf.expand_dims(position, 1) *
                           tf.expand_dims(inv_timescales, 0))
            signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
            signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
            signal = tf.reshape(signal, [1, length, channels])

            return x + signal 
開發者ID:sattree,項目名稱:gap,代碼行數:24,代碼來源:coarse_grain_model_v2.py

示例12: get_timing_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:common_layers.py

示例13: _position_encoding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def _position_encoding(position_size, dim, 
                    min_timescale=1.0,
                    max_timescale=1.0e4):
    position = tf.to_float(tf.range(position_size))
    num_timescales = dim // 2
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.to_float(num_timescales) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) \
        * tf.expand_dims(inv_timescales, 0)
    signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
    signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
    signal = tf.reshape(signal, [1, position_size, dim])

    return signal 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:label_network_utils.py

示例14: get_positional_signal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def get_positional_signal(time_steps, depth, float_dtype, min_timescale=1, max_timescale=10000):
    """ Generates a series of sinusoid functions capable of expressing the relative and absolute position
    of a token within a longer sequence. """
    # Convert to floats
    min_timescale = tf.cast(min_timescale, float_dtype)
    max_timescale = tf.cast(max_timescale, float_dtype)
    # Obtain timing signal via sinusoids
    num_timescales = tf.cast(depth // 2, float_dtype)
    log_timescale_increment = tf.math.log(max_timescale / min_timescale) / (num_timescales - tf.cast(1.0, float_dtype))
    # Introduce an offset between individual timescales to obtain different frequencies
    incremented_timescales = \
        min_timescale * tf.exp(tf.range(num_timescales, dtype=float_dtype) * -log_timescale_increment)
    # Assign the designated number of time-scales per token position
    positions = tf.cast(tf.range(time_steps), float_dtype)
    scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(incremented_timescales, 0)
    positional_signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)

    # Pad the signal tensor, if needed
    pad_size = depth % 2
    if pad_size != 0:
        tf.pad(tensor=positional_signal, paddings=[[0, 0], [0, pad_size]])
    # Reshape the signal to make it compatible with the target tensor
    positional_signal = tf.reshape(positional_signal, [1, time_steps, depth])
    return positional_signal 
開發者ID:EdinburghNLP,項目名稱:nematus,代碼行數:26,代碼來源:transformer_layers.py

示例15: transform

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sin [as 別名]
def transform(image, landmark, translation=[0, 0], rotation=0, scale=1):
  """Apply an affine transformation to the image."""
  image = tf.convert_to_tensor(image)
  landmark = tf.convert_to_tensor(landmark, dtype=tf.float32)
  translation = tf.convert_to_tensor(translation, dtype=tf.float32)
  rotation = tf.convert_to_tensor(rotation, dtype=tf.float32)
  scale = tf.convert_to_tensor(scale, dtype=tf.float32)
  # Generate a transformation matrix
  h, w = image.shape.as_list()[-3:-1]
  tx, ty = tf.unstack(translation, axis=-1)
  sc = tf.cos(rotation) / scale
  ss = tf.sin(rotation) / scale
  cx = (sc - 1) * w * 0.5 + ss * h * 0.5
  cy = -ss * w * 0.5 + (sc - 1) * h * 0.5
  ze = tf.zeros_like(scale)
  # Apply transformation to image
  p = tf.transpose([sc, ss, -cx - tx, -ss, sc, -cy - ty, ze, ze])
  image_shape = image.shape
  image = tf.contrib.image.transform(image, p, interpolation="BILINEAR")
  image.set_shape(image_shape)
  # Apply transformation to landmarks
  a_r = tf.linalg.inv(tf.transpose([[sc, -ss], [ss, sc]]))
  a_t = tf.expand_dims(tf.transpose([cx + tx, cy + ty]), -2)
  landmark = tf.matmul(landmark + a_t, a_r, transpose_b=True)
  return image, landmark 
開發者ID:vahidk,項目名稱:TensorflowFramework,代碼行數:27,代碼來源:image_ops.py


注:本文中的tensorflow.sin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。