本文整理匯總了Python中tensorflow.sigmoid方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.sigmoid方法的具體用法?Python tensorflow.sigmoid怎麽用?Python tensorflow.sigmoid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.sigmoid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build_score_converter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def _build_score_converter(score_converter_config):
"""Builds score converter based on the config.
Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
the config.
Args:
score_converter_config: post_processing_pb2.PostProcessing.score_converter.
Returns:
Callable score converter op.
Raises:
ValueError: On unknown score converter.
"""
if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
return tf.identity
if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
return tf.sigmoid
if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
return tf.nn.softmax
raise ValueError('Unknown score converter.')
示例2: _Apply
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def _Apply(self, *args):
xtransform = self._TransformInputs(*args)
depth_axis = len(self._output_shape) - 1
if self.hidden is not None:
htransform = self._TransformHidden(self.hidden)
f, i, j, o = tf.split(
value=htransform + xtransform, num_or_size_splits=4, axis=depth_axis)
else:
f, i, j, o = tf.split(
value=xtransform, num_or_size_splits=4, axis=depth_axis)
if self.cell is not None:
self.cell = tf.sigmoid(f) * self.cell + tf.sigmoid(i) * tf.tanh(j)
else:
self.cell = tf.sigmoid(i) * tf.tanh(j)
self.hidden = tf.sigmoid(o) * tf.tanh(self.cell)
return self.hidden
示例3: conv_lstm
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def conv_lstm(x,
kernel_size,
filters,
padding="SAME",
dilation_rate=(1, 1),
name=None,
reuse=None):
"""Convolutional LSTM in 1 dimension."""
with tf.variable_scope(
name, default_name="conv_lstm", values=[x], reuse=reuse):
gates = conv(
x,
4 * filters,
kernel_size,
padding=padding,
dilation_rate=dilation_rate)
g = tf.split(layer_norm(gates, 4 * filters), 4, axis=3)
new_cell = tf.sigmoid(g[0]) * x + tf.sigmoid(g[1]) * tf.tanh(g[3])
return tf.sigmoid(g[2]) * tf.tanh(new_cell)
示例4: gated_linear_unit_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def gated_linear_unit_layer(x, name=None):
"""Gated linear unit layer.
Paper: Language Modeling with Gated Convolutional Networks.
Link: https://arxiv.org/abs/1612.08083
x = Wx * sigmoid(W'x).
Args:
x: A tensor
name: A string
Returns:
A tensor of the same shape as x.
"""
with tf.variable_scope(name, default_name="glu_layer", values=[x]):
depth = shape_list(x)[-1]
x = tf.layers.dense(x, depth * 2, activation=None)
x, gating_x = tf.split(x, 2, axis=-1)
return x * tf.nn.sigmoid(gating_x)
示例5: yolo_boxes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def yolo_boxes(pred, anchors, num_classes, training=True):
# pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes))
grid_size = tf.shape(pred)[1:3][::-1]
grid_y, grid_x = tf.shape(pred)[1], tf.shape(pred)[2]
box_xy, box_wh, objectness, class_probs = tf.split(pred, (2, 2, 1, num_classes), axis=-1)
box_xy = tf.sigmoid(box_xy)
objectness = tf.sigmoid(objectness)
class_probs = tf.nn.softmax(class_probs)
pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss
# !!! grid[x][y] == (y, x)
grid = tf.meshgrid(tf.range(grid_x), tf.range(grid_y))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2]
box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32)
box_wh = tf.exp(box_wh) * anchors
box_x1y1 = box_xy - box_wh / 2
box_x2y2 = box_xy + box_wh / 2
bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)
return bbox, objectness, class_probs, pred_box
示例6: _build_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def _build_model(self):
# define initial relation features
if self.use_context or (self.use_path and self.path_type == 'rnn'):
self._build_relation_feature()
self.scores = 0.0
if self.use_context:
edges_list, mask_list = self._get_neighbors_and_masks(self.labels, self.entity_pairs, self.train_edges)
self.aggregators = self._get_neighbor_aggregators() # define aggregators for each layer
self.aggregated_neighbors = self._aggregate_neighbors(edges_list, mask_list) # [batch_size, n_relations]
self.scores += self.aggregated_neighbors
if self.use_path:
if self.path_type == 'embedding':
self.W, self.b = self._get_weight_and_bias(self.n_paths, self.n_relations) # [batch_size, n_relations]
self.scores += tf.sparse_tensor_dense_matmul(self.path_features, self.W) + self.b
elif self.path_type == 'rnn':
rnn_output = self._rnn(self.path_ids) # [batch_size, path_samples, n_relations]
self.scores += self._aggregate_paths(rnn_output)
# narrow the range of scores to [0, 1] for the ease of calculating ranking-based metrics
self.scores_normalized = tf.sigmoid(self.scores)
示例7: build_score_converter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def build_score_converter(score_converter_config, is_training):
"""Builds score converter based on the config.
Builds one of [tf.identity, tf.sigmoid] score converters based on the config
and whether the BoxPredictor is for training or inference.
Args:
score_converter_config:
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.score_converter.
is_training: Indicates whether the BoxPredictor is in training mode.
Returns:
Callable score converter op.
Raises:
ValueError: On unknown score converter.
"""
if score_converter_config == (
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.IDENTITY):
return tf.identity
if score_converter_config == (
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.SIGMOID):
return tf.identity if is_training else tf.sigmoid
raise ValueError('Unknown score converter.')
示例8: _build_score_converter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def _build_score_converter(score_converter_config, logit_scale):
"""Builds score converter based on the config.
Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
the config.
Args:
score_converter_config: post_processing_pb2.PostProcessing.score_converter.
logit_scale: temperature to use for SOFTMAX score_converter.
Returns:
Callable score converter op.
Raises:
ValueError: On unknown score converter.
"""
if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
return _score_converter_fn_with_logit_scale(tf.identity, logit_scale)
if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale)
if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale)
raise ValueError('Unknown score converter.')
示例9: is_normalized
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def is_normalized(self):
"""Returns true only if the associated loss is normalized.
We call a classification loss "normalized" if there exists a random variable
Z such that, for any values of the predictions and weights:
> loss(predictions, weights) = E[zero-one-loss(predictions + Z, weights)]
where the expectation is taken over Z.
Intuitively, a normalized loss can be interpreted as a smoothed zero-one
loss (e.g. a ramp or a sigmoid), while a non-normalized loss will typically
be some unbounded relaxation (e.g. a hinge).
Returns:
True if the loss is normalized. False otherwise.
"""
示例10: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def __call__(self, inputs, state, scope=None):
num_proj = self._num_units if self._num_proj is None else self._num_proj
c_prev = tf.slice(state, [0, 0], [-1, self._num_units])
m_prev = tf.slice(state, [0, self._num_units], [-1, num_proj])
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
with tf.variable_scope(type(self).__name__,
initializer=self._initializer): # "LSTMCell"
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
cell_inputs = tf.concat(1, [inputs, m_prev])
lstm_matrix = tf.nn.bias_add(tf.matmul(cell_inputs, self._concat_w), self._b)
i, j, f, o = tf.split(1, 4, lstm_matrix)
c = tf.sigmoid(f + 1.0) * c_prev + tf.sigmoid(i) * tf.tanh(j)
m = tf.sigmoid(o) * tf.tanh(c)
if self._num_proj is not None:
m = tf.matmul(m, self._concat_w_proj)
new_state = tf.concat(1, [c, m])
return m, new_state
示例11: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def call(self, inputs, **kwargs):
inputs_normed = self.bn(inputs)
# tf.layers.batch_normalization(
# inputs, axis=self.axis, epsilon=self.epsilon, center=False, scale=False)
x_p = tf.sigmoid(inputs_normed)
return self.alphas * (1.0 - x_p) * inputs + x_p * inputs
示例12: inference
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def inference(input_data):
with tf.variable_scope('hidden1'):
# 第一層 16 個
weights = tf.get_variable("weight", [1, 16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
biases = tf.get_variable("bias", [1, 16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
hidden1 = tf.sigmoid(tf.multiply(input_data, weights) + biases)
with tf.variable_scope('hidden2'):
# 第二層 16 個
weights = tf.get_variable("weight", [16, 16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
biases = tf.get_variable("bias", [16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
hidden2 = tf.sigmoid(tf.matmul(hidden1, weights) + biases)
with tf.variable_scope('hidden3'):
# 第三層 16 個
weights = tf.get_variable("weight", [16, 16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
biases = tf.get_variable("bias", [16], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
hidden3 = tf.sigmoid(tf.matmul(hidden2, weights) + biases)
with tf.variable_scope('output_layer'):
# 輸出層
weights = tf.get_variable("weight", [16, 1], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
biases = tf.get_variable("bias", [1], tf.float32,
initializer=tf.random_normal_initializer(0.0, 1))
output = tf.matmul(hidden3, weights) + biases
return output
# 訓練
示例13: LogisticClassifier
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def LogisticClassifier(inputs, labels, scope=None, reuse=None):
with tf.variable_scope(scope, 'LogisticClassifier', [inputs, labels],
reuse=reuse):
predictions = slim.fully_connected(inputs, 1, activation_fn=tf.sigmoid,
scope='fully_connected')
slim.losses.log_loss(predictions, labels)
return predictions
示例14: BatchNormClassifier
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def BatchNormClassifier(inputs, labels, scope=None, reuse=None):
with tf.variable_scope(scope, 'BatchNormClassifier', [inputs, labels],
reuse=reuse):
inputs = slim.batch_norm(inputs, decay=0.1)
predictions = slim.fully_connected(inputs, 1,
activation_fn=tf.sigmoid,
scope='fully_connected')
slim.losses.log_loss(predictions, labels)
return predictions
示例15: LSTMCell
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import sigmoid [as 別名]
def LSTMCell(x, mprev, cprev, key, params):
"""Create an LSTM cell.
Implements the equations in pg.2 from
"Long Short-Term Memory Based Recurrent Neural Network Architectures
For Large Vocabulary Speech Recognition",
Hasim Sak, Andrew Senior, Francoise Beaufays.
Args:
w: A dictionary of the weights and optional biases as returned
by LSTMParametersSplit().
x: Inputs to this cell.
mprev: m_{t-1}, the recurrent activations (same as the output)
from the previous cell.
cprev: c_{t-1}, the cell activations from the previous cell.
keep_prob: Keep probability on the input and the outputs of a cell.
Returns:
m: Outputs of this cell.
c: Cell Activations.
"""
i = tf.matmul(x, params[key + "_ix"]) + tf.matmul(mprev, params[key + "_im"])
i = tf.nn.bias_add(i, params[key + "_i"])
f = tf.matmul(x, params[key + "_fx"]) + tf.matmul(mprev, params[key + "_fm"])
f = tf.nn.bias_add(f, params[key + "_f"])
c = tf.matmul(x, params[key + "_cx"]) + tf.matmul(mprev, params[key + "_cm"])
c = tf.nn.bias_add(c, params[key + "_c"])
o = tf.matmul(x, params[key + "_ox"]) + tf.matmul(mprev, params[key + "_om"])
o = tf.nn.bias_add(o, params[key + "_o"])
i = tf.sigmoid(i, name="i_gate")
f = tf.sigmoid(f, name="f_gate")
o = tf.sigmoid(o, name="o_gate")
c = f * cprev + i * tf.tanh(c)
m = o * c
return m, c