本文整理匯總了Python中tensorflow.setdiff1d方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.setdiff1d方法的具體用法?Python tensorflow.setdiff1d怎麽用?Python tensorflow.setdiff1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.setdiff1d方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _testListDiff
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def _testListDiff(self, x, y, out, idx):
for dtype in _TYPES:
if dtype == tf.string:
x = [tf.compat.as_bytes(str(a)) for a in x]
y = [tf.compat.as_bytes(str(a)) for a in y]
out = [tf.compat.as_bytes(str(a)) for a in out]
for diff_func in [tf.setdiff1d]:
with self.test_session() as sess:
x_tensor = tf.convert_to_tensor(x, dtype=dtype)
y_tensor = tf.convert_to_tensor(y, dtype=dtype)
out_tensor, idx_tensor = diff_func(x_tensor, y_tensor)
tf_out, tf_idx = sess.run([out_tensor, idx_tensor])
self.assertAllEqual(tf_out, out)
self.assertAllEqual(tf_idx, idx)
self.assertEqual(1, out_tensor.get_shape().ndims)
self.assertEqual(1, idx_tensor.get_shape().ndims)
示例2: find_dup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def find_dup(a):
""" Find the duplicated elements in 1-D a tensor.
Args:
a: 1-D tensor.
Return:
more_than_one_vals: duplicated value in a.
indexes_in_a: duplicated value's index in a.
dups_in_a: duplicated value with duplicate in a.
"""
unique_a_vals, unique_idx = tf.unique(a)
count_a_unique = tf.unsorted_segment_sum(tf.ones_like(a),
unique_idx,
tf.shape(a)[0])
more_than_one = tf.greater(count_a_unique, 1)
more_than_one_idx = tf.squeeze(tf.where(more_than_one))
more_than_one_vals = tf.squeeze(tf.gather(unique_a_vals, more_than_one_idx))
not_duplicated, _ = tf.setdiff1d(a, more_than_one_vals)
dups_in_a, indexes_in_a = tf.setdiff1d(a, not_duplicated)
return more_than_one_vals, indexes_in_a, dups_in_a
示例3: setdiff1d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None):
return gen_array_ops._list_diff(x, y, index_dtype, name)
示例4: sparse_mask
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
```
Args:
a: An `IndexedSlices` instance.
mask_indices: Indices of elements to mask.
name: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
示例5: get_neg_items_session
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def get_neg_items_session(self, session_item_ids, candidate_samples, num_neg_samples):
#Ignoring negative samples clicked within the session (keeps the order and repetition of candidate_samples)
valid_samples_session, _ = tf.setdiff1d(candidate_samples, session_item_ids, index_dtype=tf.int64)
#Generating a random list of negative samples for each click (with no repetition)
session_clicks_neg_items = tf.map_fn(lambda click_id: tf.cond(tf.equal(click_id, tf.constant(0, tf.int64)),
lambda: tf.zeros(num_neg_samples, tf.int64),
lambda: self.get_neg_items_click(valid_samples_session, num_neg_samples)
)
, session_item_ids)
return session_clicks_neg_items
示例6: sparse_mask
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
```
Args:
* `a`: An `IndexedSlices` instance.
* `mask_indices`: Indices of elements to mask.
* `name`: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
示例7: sparse_mask
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import setdiff1d [as 別名]
def sparse_mask(a, mask_indices, name=None):
"""Masks elements of `IndexedSlices`.
Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that
contains a subset of the slices of `a`. Only the slices at indices not
specified in `mask_indices` are returned.
This is useful when you need to extract a subset of slices in an
`IndexedSlices` object.
For example:
```python
# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices # [12, 26, 37, 45]
tf.shape(a.values) # [4, 10]
# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])
b.indices # [26, 37]
tf.shape(b.values) # [2, 10]
```
Args:
a: An `IndexedSlices` instance.
mask_indices: Indices of elements to mask.
name: A name for the operation (optional).
Returns:
The masked `IndexedSlices` instance.
"""
with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name:
indices = a.indices
out_indices, to_gather = setdiff1d(indices, mask_indices)
out_values = gather(a.values, to_gather, name=name)
return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:array_ops.py