當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.session方法代碼示例

本文整理匯總了Python中tensorflow.session方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.session方法的具體用法?Python tensorflow.session怎麽用?Python tensorflow.session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: initialize_helpers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def initialize_helpers(self):
        """Initialize the model and call all graph constructing ops.

        This function is a wrapper for all initialization ops in the model.
        """
        if self._opts._allowsoftplacement == 'True':
            config = tf.ConfigProto(allow_soft_placement=True)
        else:
            config = tf.ConfigProto(allow_soft_placement=False)

        # allow growth to surveil the consumed GPU memory
        config.gpu_options.allow_growth = True
        # open a session:
        self.session = tf.Session(config=config)

        self.log_file.write('Initialized Batch_Generator with MODE: %s\n' % self._opts._batchgenmode)
        self.batchgen = helpers.BatchGenerator(self._opts)

        self.log_file.write('Initialized ROC_tracker\n')
        self.ROCtracker = helpers.RocTracker(self._opts) 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:22,代碼來源:DeeProtein.py

示例2: _output_training_stat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def _output_training_stat(self,
                              X: np.ndarray,
                              intents_for_X: np.ndarray,
                              is_training: 'tf.Tensor') -> np.ndarray:
        """Output training statistics"""

        n = self.evaluate_on_num_examples
        ids = np.random.permutation(len(X))[:n]
        all_Y = self._create_all_Y(X[ids].shape[0])

        train_sim = self.session.run(self.sim_op,
                                     feed_dict={self.a_in: X[ids],
                                                self.b_in: all_Y,
                                                is_training: False})

        train_acc = np.mean(np.argmax(train_sim, -1) == intents_for_X[ids])
        return train_acc 
開發者ID:weizhenzhao,項目名稱:rasa_nlu,代碼行數:19,代碼來源:embedding_intent_classifier.py

示例3: _calculate_message_sim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def _calculate_message_sim(self,
                               X: np.ndarray,
                               all_Y: np.ndarray
                               ) -> Tuple[np.ndarray, List[float]]:
        """Load tf graph and calculate message similarities"""

        message_sim = self.session.run(self.sim_op,
                                       feed_dict={self.a_in: X,
                                                  self.b_in: all_Y})
        message_sim = message_sim.flatten()  # sim is a matrix

        intent_ids = message_sim.argsort()[::-1]
        message_sim[::-1].sort()

        if self.similarity_type == 'cosine':
            # clip negative values to zero
            message_sim[message_sim < 0] = 0
        elif self.similarity_type == 'inner':
            # normalize result to [0, 1] with softmax
            message_sim = np.exp(message_sim)
            message_sim /= np.sum(message_sim)

        # transform sim to python list for JSON serializing
        return intent_ids, message_sim.tolist() 
開發者ID:weizhenzhao,項目名稱:rasa_nlu,代碼行數:26,代碼來源:embedding_intent_classifier.py

示例4: _calculate_message_sim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def _calculate_message_sim(self, X, all_Y):
        """Load tf graph and calculate message similarities"""

        a_in = self.embedding_placeholder
        b_in = self.intent_placeholder

        sim = self.similarity_op
        sess = self.session

        message_sim = sess.run(sim, feed_dict={a_in: X,
                                               b_in: all_Y})
        message_sim = message_sim.flatten()  # sim is a matrix

        intent_ids = message_sim.argsort()[::-1]
        message_sim[::-1].sort()

        # transform sim to python list for JSON serializing
        message_sim = message_sim.tolist()

        return intent_ids, message_sim 
開發者ID:alfredfrancis,項目名稱:ai-chatbot-framework,代碼行數:22,代碼來源:starspace_intent_classifier.py

示例5: predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def predict(self, feed, batch_size=None):
        """ Get predictions from the model in the correct session.

        This method is a wrapper for :func:`keras.predict()` function.

        Parameters
        ----------
        feed: numpy.ndarray or list
            The feed to be provided to the model as input. This should be a ``numpy.ndarray``
            for single inputs or a ``list`` of ``numpy.ndarrays`` for multiple inputs.
        """
        if self._session is None:
            if batch_size is None:
                return self._model.predict(feed)
            return self._amd_predict_with_optimized_batchsizes(feed, batch_size)

        with self._session.as_default():  # pylint: disable=not-context-manager
            with self._session.graph.as_default():
                return self._model.predict(feed, batch_size=batch_size) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:21,代碼來源:session.py

示例6: _set_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def _set_session(self, allow_growth):
        """ Sets the session and graph.

        If the backend is AMD then this does nothing and the global ``Keras`` ``Session``
        is used
        """
        if get_backend() == "amd":
            return None

        self.graph = tf.Graph()
        config = tf.ConfigProto()
        if allow_growth and get_backend() == "nvidia":
            config.gpu_options.allow_growth = True
        try:
            session = tf.Session(graph=tf.Graph(), config=config)
        except tf_error.InternalError as err:
            if "driver version is insufficient" in str(err):
                msg = ("Your Nvidia Graphics Driver is insufficient for running Faceswap. "
                       "Please upgrade to the latest version.")
                raise FaceswapError(msg) from err
            raise err
        logger.debug("Created tf.session: (graph: %s, session: %s, config: %s)",
                     session.graph, session, config)
        return session 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:26,代碼來源:session.py

示例7: define_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def define_model(self, function):
        """ Defines a given model in the correct session.

        This method acts as a wrapper for :class:`keras.models.Model()` to ensure that the model
        is defined within it's own graph.

        Parameters
        ----------
        function: function
            A function that defines a :class:`keras.Model` and returns it's ``inputs`` and
            ``outputs``. The function that generates these results should be passed in, NOT the
            results themselves, as the function needs to be executed within the correct context.
        """
        if self._session is None:
            self._model = Model(*function())
        else:
            with self._session.as_default():  # pylint: disable=not-context-manager
                with self._session.graph.as_default():
                    self._model = Model(*function()) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:21,代碼來源:session.py

示例8: run_generator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def run_generator(self, sess, local_lr):
        """
        Runs generator part of GAN
        Arguments:
            sess(tf.session): Tensorflow Session
            local_lr(float): Learning rate
        Returns:
            Returns number of words processed
        """
        # Generate random ids to look up
        src_ids = np.random.choice(self.vocab_size, self.batch_size, replace=False)
        tgt_ids = np.random.choice(self.vocab_size, self.batch_size, replace=False)
        train_dict = {
            self.generator.src_ph: src_ids,
            self.generator.tgt_ph: tgt_ids,
            self.discriminator.do_ph: 1.0,
            self.lr_ph: local_lr,
        }
        sess.run(self.generator.map_opt, feed_dict=train_dict)
        # Run orthogonalize
        sess.run(self.generator.assign_weight)
        return 2 * self.batch_size 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:24,代碼來源:crossling_emb.py

示例9: run_discriminator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def run_discriminator(self, sess, local_lr):
        """
        Runs discriminator part of GAN
        Arguments:
            sess(tf.session): Tensorflow Session
            local_lr(float): Learning rate
        """
        # Generate random ids to look up
        src_ids = np.random.choice(self.most_freq, self.batch_size, replace=False)
        tgt_ids = np.random.choice(self.most_freq, self.batch_size, replace=False)
        train_dict = {
            self.generator.src_ph: src_ids,
            self.generator.tgt_ph: tgt_ids,
            self.discriminator.do_ph: 0.9,
            self.lr_ph: local_lr,
        }
        return sess.run(
            [self.discriminator.disc_cost, self.discriminator.disc_opt], feed_dict=train_dict
        ) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:21,代碼來源:crossling_emb.py

示例10: run

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def run(self, sess, local_lr):
        """
        Runs whole GAN
        Arguments:
            sess(tf.session): Tensorflow Session
            local_lr(float): Learning rate
        """
        disc_cost_acc = []
        n_words_proc = 0
        tic = time.time()
        for iters in range(0, self.iters_epoch, self.batch_size):
            # 1.Run the discriminator
            for _ in range(self.disc_runs):
                disc_result = self.run_discriminator(sess, local_lr)
                disc_cost_acc.append(disc_result[0])
            # 2.Run the Generator
            n_words_proc += self.run_generator(sess, local_lr)
            # 3.Report the metrics
            self.report_metrics(iters, n_words_proc, disc_cost_acc, tic) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:21,代碼來源:crossling_emb.py

示例11: apply_procrustes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def apply_procrustes(self, sess, final_pairs):
        """
        Applies procrustes to W matrix for better mapping
        Arguments:
            sess(tf.session): Tensorflow Session
            final_pairs(ndarray): Array of pairs which are mutual neighbors
        """
        print("Applying solution of Procrustes problem to get better mapping...")
        proc_dict = {
            self.generator.src_ph: final_pairs[:, 0],
            self.generator.tgt_ph: final_pairs[:, 1],
        }
        A, B = sess.run([self.generator.src_emb, self.generator.tgt_emb], feed_dict=proc_dict)
        # pylint: disable=no-member
        R = scipy.linalg.orthogonal_procrustes(A, B)
        sess.run(tf.assign(self.generator.W, R[0])) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:18,代碼來源:crossling_emb.py

示例12: calc_nn_acc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def calc_nn_acc(self, sess, batch_size=512):
        """
        Evaluates accuracy of mapping using Nearest neighbors
        Arguments:
            sess(tf.session): Tensorflow Session
            batch_size(int): Size of batch
        """
        top_matches = []
        eval_size = len(self.src_ind)

        # Loop through all the eval dataset
        for i in range(0, eval_size, batch_size):
            src_ids = [self.src_ind[x] for x in range(i, min(i + batch_size, eval_size))]
            eval_dict = {self.src_ph: src_ids, self.tgt_ph: self.tgt_ids}
            matches = sess.run(self.eval_nn, feed_dict=eval_dict)
            top_matches.append(matches[1])
        top_matches = np.concatenate(top_matches)

        print("Accuracy using Nearest Neighbors is")
        self.calc_accuracy(top_matches) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:22,代碼來源:evaluate.py

示例13: calc_csls_score

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def calc_csls_score(self, sess, batch_size=512):
        """
        Calculates similarity score between two embeddings
        Arguments:
            sess(tf.session): Tensorflow Session
            batch_size(int): Size of batch to process
        Returns:
            Returns similarity score numpy array
        """
        score_val = []
        eval_size = len(self.src_ind)
        # Calculate scores
        for i in range(0, eval_size, batch_size):
            score_src_ids = [self.src_ind[x] for x in range(i, min(i + batch_size, eval_size))]
            eval_dict = {self.src_ph: score_src_ids, self.tgt_ph: self.tgt_ids}
            score_val.append(sess.run(self.csls_subgraphs["ScoreGraph"], feed_dict=eval_dict))
        score_val = np.concatenate(score_val)
        return score_val 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:20,代碼來源:evaluate.py

示例14: calc_avg_dist

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def calc_avg_dist(self, sess, batch_size=512):
        """
        Calculates average distance between two embeddings
        Arguments:
            sess(tf.session): Tensorflow session
            batch_size(int): batch_size
        Returns:
            Returns numpy array of average values of size vocab_size
        """
        avg1_val = []
        avg2_val = []

        # Calculate Average
        for i in range(0, self.vocab_size, batch_size):
            avg_src_ids = [x for x in range(i, min(i + batch_size, self.vocab_size))]
            avg1_dict = {self.src_ph: avg_src_ids, self.tgt_ph: self.tgt_ids}
            avg1_val.append(sess.run(self.csls_subgraphs["Avg1S2T"], feed_dict=avg1_dict))
            avg2_val.append(sess.run(self.csls_subgraphs["Avg2S2T"], feed_dict=avg1_dict))
        avg1_val = np.concatenate(avg1_val)
        avg2_val = np.concatenate(avg2_val)
        return avg1_val, avg2_val 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:23,代碼來源:evaluate.py

示例15: run_csls_metrics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import session [as 別名]
def run_csls_metrics(self, sess, batch_size=512):
        """
        Runs the whole CSLS metrics
        Arguments:
            sess(tf.session): Tensorflow Session
            batch_size(int): Batch Size
        """
        top_matches = []
        score = self.calc_csls_score(sess)
        avg1, avg2 = self.calc_avg_dist(sess)
        csls_scores = 2 * score - (avg1[self.src_ind][:, None] + avg2[None, :])
        # Calculate top matches
        for i in range(0, len(self.src_ind), batch_size):
            scores = [csls_scores[x] for x in range(i, min(i + batch_size, len(self.src_ind)))]
            top_matches_val = sess.run(
                self.csls_subgraphs["Top100"], feed_dict={self.score_ph: scores}
            )[1]
            top_matches.append(top_matches_val)
        top_matches = np.concatenate(top_matches)
        print("Accuracy using CSLS is")
        self.calc_accuracy(top_matches)
        self.calc_csls(sess) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:24,代碼來源:evaluate.py


注:本文中的tensorflow.session方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。