本文整理匯總了Python中tensorflow.self_adjoint_eig方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.self_adjoint_eig方法的具體用法?Python tensorflow.self_adjoint_eig怎麽用?Python tensorflow.self_adjoint_eig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.self_adjoint_eig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: log_coral_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def log_coral_loss(self, h_src, h_trg, gamma=1e-3):
# regularized covariances result in inf or nan
# First: subtract the mean from the data matrix
batch_size = tf.to_float(tf.shape(h_src)[0])
h_src = h_src - tf.reduce_mean(h_src, axis=0)
h_trg = h_trg - tf.reduce_mean(h_trg, axis=0 )
cov_source = (1./(batch_size-1)) * tf.matmul( h_src, h_src, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
cov_target = (1./(batch_size-1)) * tf.matmul( h_trg, h_trg, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
#eigen decomposition
eig_source = tf.self_adjoint_eig(cov_source)
eig_target = tf.self_adjoint_eig(cov_target)
log_cov_source = tf.matmul( eig_source[1] , tf.matmul(tf.diag( tf.log(eig_source[0]) ), eig_source[1], transpose_b=True) )
log_cov_target = tf.matmul( eig_target[1] , tf.matmul(tf.diag( tf.log(eig_target[0]) ), eig_target[1], transpose_b=True) )
# Returns the Frobenius norm
return tf.reduce_mean(tf.square( tf.subtract(log_cov_source,log_cov_target)))
#~ return tf.reduce_mean(tf.reduce_max(eig_target[0]))
#~ return tf.to_float(tf.equal(tf.count_nonzero(h_src), tf.count_nonzero(h_src)))
示例2: update
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def update(self, block):
input_factor = block._input_factor
output_factor = block._output_factor
pi = _compute_pi_tracenorm(input_factor.get_cov(), output_factor.get_cov())
coeff = self._coeff / block._renorm_coeff
coeff = coeff ** 0.5
damping = coeff / (self._eta ** 0.5)
ue, uv = tf.self_adjoint_eig(
input_factor.get_cov() / pi + damping * tf.eye(self._u_c.shape.as_list()[0]))
ve, vv = tf.self_adjoint_eig(
output_factor.get_cov() * pi + damping * tf.eye(self._v_c.shape.as_list()[0]))
ue = coeff / tf.maximum(ue, damping)
new_uc = uv * ue ** 0.5
ve = coeff / tf.maximum(ve, damping)
new_vc = vv * ve ** 0.5
updates_op = [self._u_c.assign(new_uc), self._v_c.assign(new_vc)]
return tf.group(*updates_op)
示例3: compute_stats_eigen
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def compute_stats_eigen(self):
"""
compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue
:return: ([TensorFlow Tensor]) update operations
"""
# TODO: figure out why this op has delays (possibly moving eigenvectors around?)
with tf.device('/cpu:0'):
stats_eigen = self.stats_eigen
computed_eigen = {}
eigen_reverse_lookup = {}
update_ops = []
# sync copied stats
with tf.control_dependencies([]):
for stats_var in stats_eigen:
if stats_var not in computed_eigen:
eigen_decomposition = tf.self_adjoint_eig(stats_var)
eigen_values = eigen_decomposition[0]
eigen_vectors = eigen_decomposition[1]
if self._use_float64:
eigen_values = tf.cast(eigen_values, tf.float64)
eigen_vectors = tf.cast(eigen_vectors, tf.float64)
update_ops.append(eigen_values)
update_ops.append(eigen_vectors)
computed_eigen[stats_var] = {'e': eigen_values, 'Q': eigen_vectors}
eigen_reverse_lookup[eigen_values] = stats_eigen[stats_var]['e']
eigen_reverse_lookup[eigen_vectors] = stats_eigen[stats_var]['Q']
self.eigen_reverse_lookup = eigen_reverse_lookup
self.eigen_update_list = update_ops
if KFAC_DEBUG:
self.eigen_update_list = [item for item in update_ops]
with tf.control_dependencies(update_ops):
update_ops.append(tf.Print(tf.constant(
0.), [tf.convert_to_tensor('computed factor eigen')]))
return update_ops
示例4: test_SelfAdjointEigV2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def test_SelfAdjointEigV2(self):
t = tf.self_adjoint_eig(np.array(3 * [3, 2, 2, 1]).reshape(3, 2, 2).astype("float32"))
# the order of eigen vectors and values may differ between tf and np, so only compare sum
# and mean
# also, different numerical algorithms are used, so account for difference in precision by
# comparing numbers with 4 digits
self.check(t, ndigits=4, stats=True, abs=True)
示例5: posdef_inv_eig
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def posdef_inv_eig(tensor, identity, damping):
"""Computes inverse(tensor + damping * identity) with eigendecomposition."""
eigenvalues, eigenvectors = tf.self_adjoint_eig(tensor + damping * identity)
return tf.matmul(eigenvectors / eigenvalues, eigenvectors, transpose_b=True)
示例6: posdef_eig_self_adjoint
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def posdef_eig_self_adjoint(mat):
"""Computes eigendecomposition using self_adjoint_eig."""
evals, evecs = tf.self_adjoint_eig(mat)
evals = tf.abs(evals) # Should be equivalent to svd approach.
return evals, evecs
示例7: get_eigendecomp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def get_eigendecomp(self):
"""Creates or retrieves eigendecomposition of self._cov."""
# Unlike get_matpower this doesn't retrieve a stored variable, but instead
# always computes a fresh version from the current value of self.cov.
if not self._eigendecomp:
eigenvalues, eigenvectors = tf.self_adjoint_eig(self.cov)
# The matrix self._cov is positive semidefinite by construction, but the
# numerical eigenvalues could be negative due to numerical errors, so here
# we clip them to be at least FLAGS.eigenvalue_clipping_threshold
clipped_eigenvalues = tf.maximum(eigenvalues,
EIGENVALUE_CLIPPING_THRESHOLD)
self._eigendecomp = (clipped_eigenvalues, eigenvectors)
return self._eigendecomp
示例8: testWrongDimensions
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def testWrongDimensions(self):
# The input to self_adjoint_eig should be a tensor of
# at least rank 2.
scalar = tf.constant(1.)
with self.assertRaises(ValueError):
tf.self_adjoint_eig(scalar)
vector = tf.constant([1., 2.])
with self.assertRaises(ValueError):
tf.self_adjoint_eig(vector)
示例9: _GetSelfAdjointEigGradTest
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def _GetSelfAdjointEigGradTest(dtype_, shape_):
def Test(self):
np.random.seed(1)
n = shape_[-1]
batch_shape = shape_[:-2]
a = np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
a += a.T
a = np.tile(a, batch_shape + (1, 1))
# Optimal stepsize for central difference is O(epsilon^{1/3}).
epsilon = np.finfo(dtype_).eps
delta = 0.1 * epsilon**(1.0 / 3.0)
# tolerance obtained by looking at actual differences using
# np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
if dtype_ == np.float32:
tol = 1e-2
else:
tol = 1e-7
with self.test_session():
tf_a = tf.constant(a)
tf_e, tf_v = tf.self_adjoint_eig(tf_a)
for b in tf_e, tf_v:
x_init = np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
x_init += x_init.T
x_init = np.tile(x_init, batch_shape + (1, 1))
theoretical, numerical = tf.test.compute_gradient(
tf_a,
tf_a.get_shape().as_list(),
b,
b.get_shape().as_list(),
x_init_value=x_init,
delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
return Test
示例10: tf_quaternion_from_matrix
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_quaternion_from_matrix(M):
import tensorflow as tf
m00 = M[:, 0, 0][..., None]
m01 = M[:, 0, 1][..., None]
m02 = M[:, 0, 2][..., None]
m10 = M[:, 1, 0][..., None]
m11 = M[:, 1, 1][..., None]
m12 = M[:, 1, 2][..., None]
m20 = M[:, 2, 0][..., None]
m21 = M[:, 2, 1][..., None]
m22 = M[:, 2, 2][..., None]
# symmetric matrix K
zeros = tf.zeros_like(m00)
K = tf.concat(
[m00 - m11 - m22, zeros, zeros, zeros,
m01 + m10, m11 - m00 - m22, zeros, zeros,
m02 + m20, m12 + m21, m22 - m00 - m11, zeros,
m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
axis=1)
K = tf.reshape(K, (-1, 4, 4))
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = tf.self_adjoint_eig(K)
q0 = V[:, 3, 3][..., None]
q1 = V[:, 0, 3][..., None]
q2 = V[:, 1, 3][..., None]
q3 = V[:, 2, 3][..., None]
q = tf.concat([q0, q1, q2, q3], axis=1)
sel = tf.reshape(tf.to_float(q[:, 0] < 0.0), (-1, 1))
q = (1.0 - sel) * q - sel * q
return q
示例11: tf_min_eig_vec
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_min_eig_vec(self):
"""Function for min eigen vector using tf's full eigen decomposition."""
# Full eigen decomposition requires the explicit psd matrix M
_, matrix_m = self.dual_object.get_full_psd_matrix()
[eig_vals, eig_vectors] = tf.self_adjoint_eig(matrix_m)
index = tf.argmin(eig_vals)
return tf.reshape(
eig_vectors[:, index], shape=[eig_vectors.shape[0].value, 1])
示例12: tf_smooth_eig_vec
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_smooth_eig_vec(self):
"""Function that returns smoothed version of min eigen vector."""
_, matrix_m = self.dual_object.get_full_psd_matrix()
# Easier to think in terms of max so negating the matrix
[eig_vals, eig_vectors] = tf.self_adjoint_eig(-matrix_m)
exp_eig_vals = tf.exp(tf.divide(eig_vals, self.smooth_placeholder))
scaling_factor = tf.reduce_sum(exp_eig_vals)
# Multiplying each eig vector by exponential of corresponding eig value
# Scaling factor normalizes the vector to be unit norm
eig_vec_smooth = tf.divide(
tf.matmul(eig_vectors, tf.diag(tf.sqrt(exp_eig_vals))),
tf.sqrt(scaling_factor))
return tf.reshape(
tf.reduce_sum(eig_vec_smooth, axis=1),
shape=[eig_vec_smooth.shape[0].value, 1])
示例13: ComputeDPPrincipalProjection
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def ComputeDPPrincipalProjection(data, projection_dims,
sanitizer, eps_delta, sigma):
"""Compute differentially private projection.
Args:
data: the input data, each row is a data vector.
projection_dims: the projection dimension.
sanitizer: the sanitizer used for achieving privacy.
eps_delta: (eps, delta) pair.
sigma: if not None, use noise sigma; otherwise compute it using
eps_delta pair.
Returns:
A projection matrix with projection_dims columns.
"""
eps, delta = eps_delta
# Normalize each row.
normalized_data = tf.nn.l2_normalize(data, 1)
covar = tf.matmul(tf.transpose(normalized_data), normalized_data)
saved_shape = tf.shape(covar)
num_examples = tf.slice(tf.shape(data), [0], [1])
if eps > 0:
# Since the data is already normalized, there is no need to clip
# the covariance matrix.
assert delta > 0
saned_covar = sanitizer.sanitize(
tf.reshape(covar, [1, -1]), eps_delta, sigma=sigma,
option=san.ClipOption(1.0, False), num_examples=num_examples)
saned_covar = tf.reshape(saned_covar, saved_shape)
# Symmetrize saned_covar. This also reduces the noise variance.
saned_covar = 0.5 * (saned_covar + tf.transpose(saned_covar))
else:
saned_covar = covar
# Compute the eigen decomposition of the covariance matrix, and
# return the top projection_dims eigen vectors, represented as columns of
# the projection matrix.
eigvals, eigvecs = tf.self_adjoint_eig(saned_covar)
_, topk_indices = tf.nn.top_k(eigvals, projection_dims)
topk_indices = tf.reshape(topk_indices, [projection_dims])
# Gather and return the corresponding eigenvectors.
return tf.transpose(tf.gather(tf.transpose(eigvecs), topk_indices))
示例14: _GetSelfAdjointEigTest
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def _GetSelfAdjointEigTest(dtype_, shape_):
def CompareEigenVectors(self, x, y, tol):
# Eigenvectors are only unique up to sign so we normalize the signs first.
signs = np.sign(np.sum(np.divide(x, y), -2, keepdims=True))
x *= signs
self.assertAllClose(x, y, atol=tol, rtol=tol)
def CompareEigenDecompositions(self, x_e, x_v, y_e, y_v, tol):
num_batches = int(np.prod(x_e.shape[:-1]))
n = x_e.shape[-1]
x_e = np.reshape(x_e, [num_batches] + [n])
x_v = np.reshape(x_v, [num_batches] + [n, n])
y_e = np.reshape(y_e, [num_batches] + [n])
y_v = np.reshape(y_v, [num_batches] + [n, n])
for i in range(num_batches):
x_ei, x_vi = SortEigenDecomposition(x_e[i, :], x_v[i, :, :])
y_ei, y_vi = SortEigenDecomposition(y_e[i, :], y_v[i, :, :])
self.assertAllClose(x_ei, y_ei, atol=tol, rtol=tol)
CompareEigenVectors(self, x_vi, y_vi, tol)
def Test(self):
np.random.seed(1)
n = shape_[-1]
batch_shape = shape_[:-2]
a = np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
a += a.T
a = np.tile(a, batch_shape + (1, 1))
if dtype_ == np.float32:
atol = 1e-4
else:
atol = 1e-12
for compute_v in False, True:
np_e, np_v = np.linalg.eig(a)
with self.test_session():
if compute_v:
tf_e, tf_v = tf.self_adjoint_eig(tf.constant(a))
# Check that V*diag(E)*V^T is close to A.
a_ev = tf.batch_matmul(
tf.batch_matmul(tf_v, tf.matrix_diag(tf_e)), tf_v, adj_y=True)
self.assertAllClose(a_ev.eval(), a, atol=atol)
# Compare to numpy.linalg.eig.
CompareEigenDecompositions(self, np_e, np_v, tf_e.eval(), tf_v.eval(),
atol)
else:
tf_e = tf.self_adjoint_eigvals(tf.constant(a))
self.assertAllClose(
np.sort(np_e, -1), np.sort(tf_e.eval(), -1), atol=atol)
return Test
示例15: build_KL
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def build_KL(self):
"""
The covariance of q(u) has a kronecker structure, so
appropriate reductions apply for the trace and logdet terms.
"""
# Mahalanobis term, m^T K^{-1} m
Kuu = [make_Kuu(kern, a, b, self.ms) for kern, a, b, in zip(self.kerns, self.a, self.b)]
Kim = kron_vec_apply(Kuu, self.q_mu, 'solve')
KL = 0.5*tf.reduce_sum(self.q_mu * Kim)
# Constant term
KL += -0.5*tf.cast(tf.size(self.q_mu), float_type)
# Log det term
Ls = [tf.matrix_band_part(q_sqrt_d, -1, 0) for q_sqrt_d in self.q_sqrt_kron]
N_others = [float(np.prod(self.Ms)) / M for M in self.Ms]
Q_logdets = [tf.reduce_sum(tf.log(tf.square(tf.diag_part(L)))) for L in Ls]
KL += -0.5 * reduce(tf.add, [N*logdet for N, logdet in zip(N_others, Q_logdets)])
# trace term tr(K^{-1} Sigma_q)
Ss = [tf.matmul(L, tf.transpose(L)) for L in Ls]
traces = [K.trace_KiX(S) for K, S, in zip(Kuu, Ss)]
KL += 0.5 * reduce(tf.multiply, traces) # kron-trace is the produce of traces
# log det term Kuu
Kuu_logdets = [K.logdet() for K in Kuu]
KL += 0.5 * reduce(tf.add, [N*logdet for N, logdet in zip(N_others, Kuu_logdets)])
if self.use_two_krons:
# extra logdet terms:
Ls_2 = [tf.matrix_band_part(q_sqrt_d, -1, 0) for q_sqrt_d in self.q_sqrt_kron_2]
LiL = [tf.matrix_triangular_solve(L1, L2) for L1, L2 in zip(Ls, Ls_2)]
eigvals = [tf.self_adjoint_eig(tf.matmul(tf.transpose(mat), mat))[0] for mat in LiL] # discard eigenvectors
eigvals_kronned = kron([tf.reshape(e, [1, -1]) for e in eigvals])
KL += -0.5 * tf.reduce_sum(tf.log(1 + eigvals_kronned))
# extra trace terms
Ss = [tf.matmul(L, tf.transpose(L)) for L in Ls_2]
traces = [K.trace_KiX(S) for K, S, in zip(Kuu, Ss)]
KL += 0.5 * reduce(tf.multiply, traces) # kron-trace is the produce of traces
elif self.use_extra_ranks:
# extra logdet terms
KiW = kron_mat_apply(Kuu, self.q_sqrt_W, 'solve', self.use_extra_ranks)
WTKiW = tf.matmul(tf.transpose(self.q_sqrt_W), KiW)
L_extra = tf.cholesky(np.eye(self.use_extra_ranks) + WTKiW)
KL += -0.5 * tf.reduce_sum(tf.log(tf.square(tf.diag_part(L_extra))))
# extra trace terms
KL += 0.5 * tf.reduce_sum(tf.diag_part(WTKiW))
return KL