當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.self_adjoint_eig方法代碼示例

本文整理匯總了Python中tensorflow.self_adjoint_eig方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.self_adjoint_eig方法的具體用法?Python tensorflow.self_adjoint_eig怎麽用?Python tensorflow.self_adjoint_eig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.self_adjoint_eig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: log_coral_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def log_coral_loss(self, h_src, h_trg, gamma=1e-3):
	# regularized covariances result in inf or nan
	# First: subtract the mean from the data matrix
	batch_size = tf.to_float(tf.shape(h_src)[0])
	h_src = h_src - tf.reduce_mean(h_src, axis=0) 
	h_trg = h_trg - tf.reduce_mean(h_trg, axis=0 )
	cov_source = (1./(batch_size-1)) * tf.matmul( h_src, h_src, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
	cov_target = (1./(batch_size-1)) * tf.matmul( h_trg, h_trg, transpose_a=True) #+ gamma * tf.eye(self.hidden_repr_size)
	#eigen decomposition
	eig_source  = tf.self_adjoint_eig(cov_source)
	eig_target  = tf.self_adjoint_eig(cov_target)
	log_cov_source = tf.matmul( eig_source[1] ,  tf.matmul(tf.diag( tf.log(eig_source[0]) ), eig_source[1], transpose_b=True) )
	log_cov_target = tf.matmul( eig_target[1] ,  tf.matmul(tf.diag( tf.log(eig_target[0]) ), eig_target[1], transpose_b=True) )

	# Returns the Frobenius norm
	return tf.reduce_mean(tf.square( tf.subtract(log_cov_source,log_cov_target))) 
	#~ return tf.reduce_mean(tf.reduce_max(eig_target[0]))
	#~ return tf.to_float(tf.equal(tf.count_nonzero(h_src), tf.count_nonzero(h_src))) 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:20,代碼來源:model.py

示例2: update

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def update(self, block):
        input_factor = block._input_factor
        output_factor = block._output_factor
        pi = _compute_pi_tracenorm(input_factor.get_cov(), output_factor.get_cov())

        coeff = self._coeff / block._renorm_coeff
        coeff = coeff ** 0.5
        damping = coeff / (self._eta ** 0.5)

        ue, uv = tf.self_adjoint_eig(
            input_factor.get_cov() / pi + damping * tf.eye(self._u_c.shape.as_list()[0]))
        ve, vv = tf.self_adjoint_eig(
            output_factor.get_cov() * pi + damping * tf.eye(self._v_c.shape.as_list()[0]))

        ue = coeff / tf.maximum(ue, damping)
        new_uc = uv * ue ** 0.5

        ve = coeff / tf.maximum(ve, damping)
        new_vc = vv * ve ** 0.5

        updates_op = [self._u_c.assign(new_uc), self._v_c.assign(new_vc)]
        return tf.group(*updates_op) 
開發者ID:gd-zhang,項目名稱:noisy-K-FAC,代碼行數:24,代碼來源:weight_blocks.py

示例3: compute_stats_eigen

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def compute_stats_eigen(self):
        """
        compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue

        :return: ([TensorFlow Tensor]) update operations
        """
        # TODO: figure out why this op has delays (possibly moving eigenvectors around?)
        with tf.device('/cpu:0'):
            stats_eigen = self.stats_eigen
            computed_eigen = {}
            eigen_reverse_lookup = {}
            update_ops = []
            # sync copied stats
            with tf.control_dependencies([]):
                for stats_var in stats_eigen:
                    if stats_var not in computed_eigen:
                        eigen_decomposition = tf.self_adjoint_eig(stats_var)
                        eigen_values = eigen_decomposition[0]
                        eigen_vectors = eigen_decomposition[1]
                        if self._use_float64:
                            eigen_values = tf.cast(eigen_values, tf.float64)
                            eigen_vectors = tf.cast(eigen_vectors, tf.float64)
                        update_ops.append(eigen_values)
                        update_ops.append(eigen_vectors)
                        computed_eigen[stats_var] = {'e': eigen_values, 'Q': eigen_vectors}
                        eigen_reverse_lookup[eigen_values] = stats_eigen[stats_var]['e']
                        eigen_reverse_lookup[eigen_vectors] = stats_eigen[stats_var]['Q']

            self.eigen_reverse_lookup = eigen_reverse_lookup
            self.eigen_update_list = update_ops

            if KFAC_DEBUG:
                self.eigen_update_list = [item for item in update_ops]
                with tf.control_dependencies(update_ops):
                    update_ops.append(tf.Print(tf.constant(
                        0.), [tf.convert_to_tensor('computed factor eigen')]))

        return update_ops 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:40,代碼來源:kfac.py

示例4: test_SelfAdjointEigV2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def test_SelfAdjointEigV2(self):
        t = tf.self_adjoint_eig(np.array(3 * [3, 2, 2, 1]).reshape(3, 2, 2).astype("float32"))
        # the order of eigen vectors and values may differ between tf and np, so only compare sum
        # and mean
        # also, different numerical algorithms are used, so account for difference in precision by
        # comparing numbers with 4 digits
        self.check(t, ndigits=4, stats=True, abs=True) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:9,代碼來源:ops.py

示例5: posdef_inv_eig

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def posdef_inv_eig(tensor, identity, damping):
  """Computes inverse(tensor + damping * identity) with eigendecomposition."""
  eigenvalues, eigenvectors = tf.self_adjoint_eig(tensor + damping * identity)
  return tf.matmul(eigenvectors / eigenvalues, eigenvectors, transpose_b=True) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:6,代碼來源:utils.py

示例6: posdef_eig_self_adjoint

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def posdef_eig_self_adjoint(mat):
  """Computes eigendecomposition using self_adjoint_eig."""
  evals, evecs = tf.self_adjoint_eig(mat)
  evals = tf.abs(evals)  # Should be equivalent to svd approach.

  return evals, evecs 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:8,代碼來源:utils.py

示例7: get_eigendecomp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def get_eigendecomp(self):
    """Creates or retrieves eigendecomposition of self._cov."""
    # Unlike get_matpower this doesn't retrieve a stored variable, but instead
    # always computes a fresh version from the current value of self.cov.
    if not self._eigendecomp:
      eigenvalues, eigenvectors = tf.self_adjoint_eig(self.cov)

      # The matrix self._cov is positive semidefinite by construction, but the
      # numerical eigenvalues could be negative due to numerical errors, so here
      # we clip them to be at least FLAGS.eigenvalue_clipping_threshold
      clipped_eigenvalues = tf.maximum(eigenvalues,
                                       EIGENVALUE_CLIPPING_THRESHOLD)
      self._eigendecomp = (clipped_eigenvalues, eigenvectors)

    return self._eigendecomp 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:17,代碼來源:fisher_factors.py

示例8: testWrongDimensions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def testWrongDimensions(self):
    # The input to self_adjoint_eig should be a tensor of
    # at least rank 2.
    scalar = tf.constant(1.)
    with self.assertRaises(ValueError):
      tf.self_adjoint_eig(scalar)
    vector = tf.constant([1., 2.])
    with self.assertRaises(ValueError):
      tf.self_adjoint_eig(vector) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:self_adjoint_eig_op_test.py

示例9: _GetSelfAdjointEigGradTest

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def _GetSelfAdjointEigGradTest(dtype_, shape_):

  def Test(self):
    np.random.seed(1)
    n = shape_[-1]
    batch_shape = shape_[:-2]
    a = np.random.uniform(
        low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
    a += a.T
    a = np.tile(a, batch_shape + (1, 1))
    # Optimal stepsize for central difference is O(epsilon^{1/3}).
    epsilon = np.finfo(dtype_).eps
    delta = 0.1 * epsilon**(1.0 / 3.0)
    # tolerance obtained by looking at actual differences using
    # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
    if dtype_ == np.float32:
      tol = 1e-2
    else:
      tol = 1e-7
    with self.test_session():
      tf_a = tf.constant(a)
      tf_e, tf_v = tf.self_adjoint_eig(tf_a)
      for b in tf_e, tf_v:
        x_init = np.random.uniform(
            low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
        x_init += x_init.T
        x_init = np.tile(x_init, batch_shape + (1, 1))
        theoretical, numerical = tf.test.compute_gradient(
            tf_a,
            tf_a.get_shape().as_list(),
            b,
            b.get_shape().as_list(),
            x_init_value=x_init,
            delta=delta)
        self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)

  return Test 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:self_adjoint_eig_op_test.py

示例10: tf_quaternion_from_matrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_quaternion_from_matrix(M):

    import tensorflow as tf

    m00 = M[:, 0, 0][..., None]
    m01 = M[:, 0, 1][..., None]
    m02 = M[:, 0, 2][..., None]
    m10 = M[:, 1, 0][..., None]
    m11 = M[:, 1, 1][..., None]
    m12 = M[:, 1, 2][..., None]
    m20 = M[:, 2, 0][..., None]
    m21 = M[:, 2, 1][..., None]
    m22 = M[:, 2, 2][..., None]
    # symmetric matrix K
    zeros = tf.zeros_like(m00)
    K = tf.concat(
        [m00 - m11 - m22, zeros, zeros, zeros,
         m01 + m10, m11 - m00 - m22, zeros, zeros,
         m02 + m20, m12 + m21, m22 - m00 - m11, zeros,
         m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
        axis=1)
    K = tf.reshape(K, (-1, 4, 4))
    K /= 3.0
    # quaternion is eigenvector of K that corresponds to largest eigenvalue
    w, V = tf.self_adjoint_eig(K)

    q0 = V[:, 3, 3][..., None]
    q1 = V[:, 0, 3][..., None]
    q2 = V[:, 1, 3][..., None]
    q3 = V[:, 2, 3][..., None]
    q = tf.concat([q0, q1, q2, q3], axis=1)
    sel = tf.reshape(tf.to_float(q[:, 0] < 0.0), (-1, 1))
    q = (1.0 - sel) * q - sel * q

    return q 
開發者ID:goncalo120,項目名稱:3DRegNet,代碼行數:37,代碼來源:ops.py

示例11: tf_min_eig_vec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_min_eig_vec(self):
    """Function for min eigen vector using tf's full eigen decomposition."""
    # Full eigen decomposition requires the explicit psd matrix M
    _, matrix_m = self.dual_object.get_full_psd_matrix()
    [eig_vals, eig_vectors] = tf.self_adjoint_eig(matrix_m)
    index = tf.argmin(eig_vals)
    return tf.reshape(
        eig_vectors[:, index], shape=[eig_vectors.shape[0].value, 1]) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:10,代碼來源:optimization.py

示例12: tf_smooth_eig_vec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def tf_smooth_eig_vec(self):
    """Function that returns smoothed version of min eigen vector."""
    _, matrix_m = self.dual_object.get_full_psd_matrix()
    # Easier to think in terms of max so negating the matrix
    [eig_vals, eig_vectors] = tf.self_adjoint_eig(-matrix_m)
    exp_eig_vals = tf.exp(tf.divide(eig_vals, self.smooth_placeholder))
    scaling_factor = tf.reduce_sum(exp_eig_vals)
    # Multiplying each eig vector by exponential of corresponding eig value
    # Scaling factor normalizes the vector to be unit norm
    eig_vec_smooth = tf.divide(
        tf.matmul(eig_vectors, tf.diag(tf.sqrt(exp_eig_vals))),
        tf.sqrt(scaling_factor))
    return tf.reshape(
        tf.reduce_sum(eig_vec_smooth, axis=1),
        shape=[eig_vec_smooth.shape[0].value, 1]) 
開發者ID:tensorflow,項目名稱:cleverhans,代碼行數:17,代碼來源:optimization.py

示例13: ComputeDPPrincipalProjection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def ComputeDPPrincipalProjection(data, projection_dims,
                                 sanitizer, eps_delta, sigma):
  """Compute differentially private projection.

  Args:
    data: the input data, each row is a data vector.
    projection_dims: the projection dimension.
    sanitizer: the sanitizer used for achieving privacy.
    eps_delta: (eps, delta) pair.
    sigma: if not None, use noise sigma; otherwise compute it using
      eps_delta pair.
  Returns:
    A projection matrix with projection_dims columns.
  """

  eps, delta = eps_delta
  # Normalize each row.
  normalized_data = tf.nn.l2_normalize(data, 1)
  covar = tf.matmul(tf.transpose(normalized_data), normalized_data)
  saved_shape = tf.shape(covar)
  num_examples = tf.slice(tf.shape(data), [0], [1])
  if eps > 0:
    # Since the data is already normalized, there is no need to clip
    # the covariance matrix.
    assert delta > 0
    saned_covar = sanitizer.sanitize(
        tf.reshape(covar, [1, -1]), eps_delta, sigma=sigma,
        option=san.ClipOption(1.0, False), num_examples=num_examples)
    saned_covar = tf.reshape(saned_covar, saved_shape)
    # Symmetrize saned_covar. This also reduces the noise variance.
    saned_covar = 0.5 * (saned_covar + tf.transpose(saned_covar))
  else:
    saned_covar = covar

  # Compute the eigen decomposition of the covariance matrix, and
  # return the top projection_dims eigen vectors, represented as columns of
  # the projection matrix.
  eigvals, eigvecs = tf.self_adjoint_eig(saned_covar)
  _, topk_indices = tf.nn.top_k(eigvals, projection_dims)
  topk_indices = tf.reshape(topk_indices, [projection_dims])
  # Gather and return the corresponding eigenvectors.
  return tf.transpose(tf.gather(tf.transpose(eigvecs), topk_indices)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:44,代碼來源:dp_pca.py

示例14: _GetSelfAdjointEigTest

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def _GetSelfAdjointEigTest(dtype_, shape_):

  def CompareEigenVectors(self, x, y, tol):
    # Eigenvectors are only unique up to sign so we normalize the signs first.
    signs = np.sign(np.sum(np.divide(x, y), -2, keepdims=True))
    x *= signs
    self.assertAllClose(x, y, atol=tol, rtol=tol)

  def CompareEigenDecompositions(self, x_e, x_v, y_e, y_v, tol):
    num_batches = int(np.prod(x_e.shape[:-1]))
    n = x_e.shape[-1]
    x_e = np.reshape(x_e, [num_batches] + [n])
    x_v = np.reshape(x_v, [num_batches] + [n, n])
    y_e = np.reshape(y_e, [num_batches] + [n])
    y_v = np.reshape(y_v, [num_batches] + [n, n])
    for i in range(num_batches):
      x_ei, x_vi = SortEigenDecomposition(x_e[i, :], x_v[i, :, :])
      y_ei, y_vi = SortEigenDecomposition(y_e[i, :], y_v[i, :, :])
      self.assertAllClose(x_ei, y_ei, atol=tol, rtol=tol)
      CompareEigenVectors(self, x_vi, y_vi, tol)

  def Test(self):
    np.random.seed(1)
    n = shape_[-1]
    batch_shape = shape_[:-2]
    a = np.random.uniform(
        low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
    a += a.T
    a = np.tile(a, batch_shape + (1, 1))
    if dtype_ == np.float32:
      atol = 1e-4
    else:
      atol = 1e-12
    for compute_v in False, True:
      np_e, np_v = np.linalg.eig(a)
      with self.test_session():
        if compute_v:
          tf_e, tf_v = tf.self_adjoint_eig(tf.constant(a))

          # Check that V*diag(E)*V^T is close to A.
          a_ev = tf.batch_matmul(
              tf.batch_matmul(tf_v, tf.matrix_diag(tf_e)), tf_v, adj_y=True)
          self.assertAllClose(a_ev.eval(), a, atol=atol)

          # Compare to numpy.linalg.eig.
          CompareEigenDecompositions(self, np_e, np_v, tf_e.eval(), tf_v.eval(),
                                     atol)
        else:
          tf_e = tf.self_adjoint_eigvals(tf.constant(a))
          self.assertAllClose(
              np.sort(np_e, -1), np.sort(tf_e.eval(), -1), atol=atol)

  return Test 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:55,代碼來源:self_adjoint_eig_op_test.py

示例15: build_KL

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import self_adjoint_eig [as 別名]
def build_KL(self):
        """
        The covariance of q(u) has a kronecker structure, so
        appropriate reductions apply for the trace and logdet terms.
        """
        # Mahalanobis term, m^T K^{-1} m
        Kuu = [make_Kuu(kern, a, b, self.ms) for kern, a, b, in zip(self.kerns, self.a, self.b)]
        Kim = kron_vec_apply(Kuu, self.q_mu, 'solve')
        KL = 0.5*tf.reduce_sum(self.q_mu * Kim)

        # Constant term
        KL += -0.5*tf.cast(tf.size(self.q_mu), float_type)

        # Log det term
        Ls = [tf.matrix_band_part(q_sqrt_d, -1, 0) for q_sqrt_d in self.q_sqrt_kron]
        N_others = [float(np.prod(self.Ms)) / M for M in self.Ms]
        Q_logdets = [tf.reduce_sum(tf.log(tf.square(tf.diag_part(L)))) for L in Ls]
        KL += -0.5 * reduce(tf.add, [N*logdet for N, logdet in zip(N_others, Q_logdets)])

        # trace term tr(K^{-1} Sigma_q)
        Ss = [tf.matmul(L, tf.transpose(L)) for L in Ls]
        traces = [K.trace_KiX(S) for K, S, in zip(Kuu, Ss)]
        KL += 0.5 * reduce(tf.multiply, traces)  # kron-trace is the produce of traces

        # log det term Kuu
        Kuu_logdets = [K.logdet() for K in Kuu]
        KL += 0.5 * reduce(tf.add, [N*logdet for N, logdet in zip(N_others, Kuu_logdets)])

        if self.use_two_krons:
            # extra logdet terms:
            Ls_2 = [tf.matrix_band_part(q_sqrt_d, -1, 0) for q_sqrt_d in self.q_sqrt_kron_2]
            LiL = [tf.matrix_triangular_solve(L1, L2) for L1, L2 in zip(Ls, Ls_2)]
            eigvals = [tf.self_adjoint_eig(tf.matmul(tf.transpose(mat), mat))[0] for mat in LiL]  # discard eigenvectors
            eigvals_kronned = kron([tf.reshape(e, [1, -1]) for e in eigvals])
            KL += -0.5 * tf.reduce_sum(tf.log(1 + eigvals_kronned))

            # extra trace terms
            Ss = [tf.matmul(L, tf.transpose(L)) for L in Ls_2]
            traces = [K.trace_KiX(S) for K, S, in zip(Kuu, Ss)]
            KL += 0.5 * reduce(tf.multiply, traces)  # kron-trace is the produce of traces

        elif self.use_extra_ranks:
            # extra logdet terms
            KiW = kron_mat_apply(Kuu, self.q_sqrt_W, 'solve', self.use_extra_ranks)
            WTKiW = tf.matmul(tf.transpose(self.q_sqrt_W), KiW)
            L_extra = tf.cholesky(np.eye(self.use_extra_ranks) + WTKiW)
            KL += -0.5 * tf.reduce_sum(tf.log(tf.square(tf.diag_part(L_extra))))

            # extra trace terms
            KL += 0.5 * tf.reduce_sum(tf.diag_part(WTKiW))

        return KL 
開發者ID:jameshensman,項目名稱:VFF,代碼行數:54,代碼來源:vgp.py


注:本文中的tensorflow.self_adjoint_eig方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。