本文整理匯總了Python中tensorflow.segment_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.segment_sum方法的具體用法?Python tensorflow.segment_sum怎麽用?Python tensorflow.segment_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.segment_sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def create_tensor(self, in_layers=None, set_tensors=True, **kwargs):
"""
parent layers: atom_features, atom_membership
"""
if in_layers is None:
in_layers = self.in_layers
in_layers = convert_to_layers(in_layers)
self.build()
output = in_layers[0].out_tensor
atom_membership = in_layers[1].out_tensor
for i, W in enumerate(self.W_list[:-1]):
output = tf.matmul(output, W) + self.b_list[i]
output = self.activation(output)
output = tf.matmul(output, self.W_list[-1]) + self.b_list[-1]
if self.output_activation:
output = self.activation(output)
output = tf.segment_sum(output, atom_membership)
out_tensor = output
if set_tensors:
self.variables = self.trainable_weights
self.out_tensor = out_tensor
return out_tensor
示例2: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def call(self, x):
"""Execute this layer on input tensors.
Parameters
----------
x: list of Tensor
should be [embedding tensor of molecules, of shape (batch_size*max_n_atoms*n_embedding),
mask tensor of molecules, of shape (batch_size*max_n_atoms)]
Returns
-------
list of tf.Tensor
Of shape (batch_size)
"""
self.build()
output = x[0]
atom_membership = x[1]
for i, W in enumerate(self.W_list[:-1]):
output = tf.matmul(output, W) + self.b_list[i]
output = self.activation(output)
output = tf.matmul(output, self.W_list[-1]) + self.b_list[-1]
if self.output_activation:
output = self.activation(output)
output = tf.segment_sum(output, atom_membership)
return output
示例3: test_SegmentSum
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def test_SegmentSum(self):
t = tf.segment_sum(self.random(4, 2, 3), np.array([0, 1, 1, 2]))
self.check(t)
示例4: testValues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
# Each item is np_op1, np_op2, tf_op
ops_list = [(np.add, None, tf.segment_sum),
(self._mean_cum_op, self._mean_reduce_op,
tf.segment_mean),
(np.ndarray.__mul__, None, tf.segment_prod),
(np.minimum, None, tf.segment_min),
(np.maximum, None, tf.segment_max)]
# A subset of ops has been enabled for complex numbers
complex_ops_list = [(np.add, None, tf.segment_sum),
(np.ndarray.__mul__, None, tf.segment_prod)]
n = 10
shape = [n, 2]
indices = [i // 3 for i in range(n)]
for dtype in dtypes:
if dtype in (tf.complex64, tf.complex128):
curr_ops_list = complex_ops_list
else:
curr_ops_list = ops_list
with self.test_session(use_gpu=False):
tf_x, np_x = self._input(shape, dtype=dtype)
for np_op1, np_op2, tf_op in curr_ops_list:
np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2)
s = tf_op(data=tf_x, segment_ids=indices)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
# NOTE(mrry): The static shape inference that computes
# `tf_ans.shape` can only infer that sizes from dimension 1
# onwards, because the size of dimension 0 is data-dependent
# and may therefore vary dynamically.
self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
示例5: testSegmentIdsShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsShape(self):
shape = [4, 4]
tf_x, _ = self._input(shape)
indices = tf.constant([0, 1, 2, 2], shape=[2, 2])
with self.assertRaises(ValueError):
tf.segment_sum(data=tf_x, segment_ids=indices)
示例6: testSegmentIdsSize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsSize(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 1]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment_ids should be the same size"):
s.eval()
示例7: testSegmentIdsValid
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsValid(self):
# This is a baseline for the following SegmentIdsInvalid* tests.
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 0, 0, 1]
result = tf.segment_sum(data=tf_x, segment_ids=indices).eval()
self.assertAllEqual([[15, 18, 21, 24], [13, 14, 15, 16]], result)
示例8: testSegmentIdsInvalid1
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid1(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [-1, -1, 0, 0]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment ids do not start at 0"):
s.eval()
示例9: testSegmentIdsInvalid3
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid3(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 0, 2, 2]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment ids are not increasing by 1"):
s.eval()
示例10: testSegmentIdsInvalid4
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid4(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 1, 0, 1]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment ids are not increasing by 1"):
s.eval()
示例11: testSegmentIdsInvalid5
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid5(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 1, 2, 0]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError(
r"Segment id 1 out of range \[0, 1\), probably "
"because 'segment_ids' input is not sorted."):
s.eval()
示例12: testSegmentIdsInvalid6
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid6(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 0, 0, -1]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment ids must be >= 0"):
s.eval()
示例13: testSegmentIdsInvalid7
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testSegmentIdsInvalid7(self):
shape = [4, 4]
with self.test_session():
tf_x, _ = self._input(shape)
indices = [0, 0, 0, -2]
s = tf.segment_sum(data=tf_x, segment_ids=indices)
with self.assertRaisesOpError("segment ids must be >= 0"):
s.eval()
示例14: testGradientMatchesSegmentSum
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def testGradientMatchesSegmentSum(self):
# Strategy: compute the gradient for UnsortedSegmentSum and SegmentSum
# and compare the outputs, which should be identical.
# NB: for this test to work, indices must be valid for SegmentSum, namely
# it must be sorted, the indices must be contiguous, and num_segments
# must be max(indices) + 1.
indices = [0, 0, 1, 1, 1, 2, 3, 4, 5]
n = len(indices)
num_cols = 2
shape = [n, num_cols]
num_segments = max(indices) + 1
with self.test_session(use_gpu=self.use_gpu):
tf_x, np_x = self._input(shape, dtype=tf.float64)
# Results from UnsortedSegmentSum
unsorted_s = tf.unsorted_segment_sum(data=tf_x,
segment_ids=indices,
num_segments=num_segments)
(unsorted_jacob_t, unsorted_jacob_n) = tf.test.compute_gradient(
tf_x,
shape,
unsorted_s,
[num_segments, num_cols],
x_init_value=np_x.astype(np.double),
delta=1)
# Results from SegmentSum
sorted_s = tf.segment_sum(data=tf_x, segment_ids=indices)
sorted_jacob_t, sorted_jacob_n = tf.test.compute_gradient(
tf_x,
shape,
sorted_s,
[num_segments, num_cols],
x_init_value=np_x.astype(np.double),
delta=1)
self.assertAllClose(unsorted_jacob_t, sorted_jacob_t, rtol=1e-3, atol=1e-3)
self.assertAllClose(unsorted_jacob_n, sorted_jacob_n, rtol=1e-3, atol=1e-3)
示例15: _compute_vert_context_soft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_sum [as 別名]
def _compute_vert_context_soft(self, edge_factor, vert_factor, reuse=False):
"""
attention-based vertex(node) message pooling
"""
out_edge = utils.pad_and_gather(edge_factor, self.edge_pair_mask_inds[:,0])
in_edge = utils.pad_and_gather(edge_factor, self.edge_pair_mask_inds[:,1])
# gather correspounding vert factors
vert_factor_gathered = tf.gather(vert_factor, self.edge_pair_segment_inds)
# concat outgoing edges and ingoing edges with gathered vert_factors
out_edge_w_input = tf.concat(concat_dim=1, values=[out_edge, vert_factor_gathered])
in_edge_w_input = tf.concat(concat_dim=1, values=[in_edge, vert_factor_gathered])
# compute compatibility scores
(self.feed(out_edge_w_input)
.fc(1, relu=False, reuse=reuse, name='out_edge_w_fc')
.sigmoid(name='out_edge_score'))
(self.feed(in_edge_w_input)
.fc(1, relu=False, reuse=reuse, name='in_edge_w_fc')
.sigmoid(name='in_edge_score'))
out_edge_w = self.get_output('out_edge_score')
in_edge_w = self.get_output('in_edge_score')
# weight the edge factors with computed weigths
out_edge_weighted = tf.mul(out_edge, out_edge_w)
in_edge_weighted = tf.mul(in_edge, in_edge_w)
edge_sum = out_edge_weighted + in_edge_weighted
vert_ctx = tf.segment_sum(edge_sum, self.edge_pair_segment_inds)
return vert_ctx