本文整理匯總了Python中tensorflow.segment_min方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.segment_min方法的具體用法?Python tensorflow.segment_min怎麽用?Python tensorflow.segment_min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.segment_min方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def testGradient(self):
shape = [4, 4]
indices = [0, 1, 2, 2]
for tf_op in [tf.segment_sum,
tf.segment_mean,
tf.segment_min,
tf.segment_max]:
with self.test_session():
tf_x, np_x = self._input(shape, dtype=tf.float64)
s = tf_op(data=tf_x, segment_ids=indices)
jacob_t, jacob_n = tf.test.compute_gradient(
tf_x,
shape,
s,
[3, 4],
x_init_value=np_x.astype(np.double),
delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
示例2: dense_to_sparse
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def dense_to_sparse(tensor, eos_id, merge_repeated=True):
if merge_repeated:
added_values = tf.cast(
tf.fill((tf.shape(tensor)[0], 1), eos_id), tensor.dtype)
# merge consecutive values
concat_tensor = tf.concat((tensor, added_values), axis=-1)
diff = tf.cast(concat_tensor[:, 1:] - concat_tensor[:, :-1], tf.bool)
# trim after first eos token
eos_indices = tf.where(tf.equal(concat_tensor, eos_id))
first_eos = tf.segment_min(eos_indices[:, 1], eos_indices[:, 0])
mask = tf.sequence_mask(first_eos, maxlen=tf.shape(tensor)[1])
indices = tf.where(diff & mask & tf.not_equal(tensor, -1))
values = tf.gather_nd(tensor, indices)
shape = tf.shape(tensor, out_type=tf.int64)
return tf.SparseTensor(indices, values, shape)
else:
return tf.contrib.layers.dense_to_sparse(tensor, eos_id)
示例3: get_finised_pos
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def get_finised_pos(token_seq, finished_index, max_length):
tmp_indices = tf.where(tf.equal(token_seq, int(finished_index)))
finished_pos = tf.segment_min(tmp_indices[:, 1], tmp_indices[:, 0])
sequence_mask = tf.sequence_mask(finished_pos+1, maxlen=max_length)
return tf.cast(sequence_mask, tf.int32)
示例4: test_SegmentMin
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def test_SegmentMin(self):
t = tf.segment_min(self.random(4, 2, 3), np.array([0, 1, 1, 2]))
self.check(t)
示例5: testValues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
# Each item is np_op1, np_op2, tf_op
ops_list = [(np.add, None, tf.segment_sum),
(self._mean_cum_op, self._mean_reduce_op,
tf.segment_mean),
(np.ndarray.__mul__, None, tf.segment_prod),
(np.minimum, None, tf.segment_min),
(np.maximum, None, tf.segment_max)]
# A subset of ops has been enabled for complex numbers
complex_ops_list = [(np.add, None, tf.segment_sum),
(np.ndarray.__mul__, None, tf.segment_prod)]
n = 10
shape = [n, 2]
indices = [i // 3 for i in range(n)]
for dtype in dtypes:
if dtype in (tf.complex64, tf.complex128):
curr_ops_list = complex_ops_list
else:
curr_ops_list = ops_list
with self.test_session(use_gpu=False):
tf_x, np_x = self._input(shape, dtype=dtype)
for np_op1, np_op2, tf_op in curr_ops_list:
np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2)
s = tf_op(data=tf_x, segment_ids=indices)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
# NOTE(mrry): The static shape inference that computes
# `tf_ans.shape` can only infer that sizes from dimension 1
# onwards, because the size of dimension 0 is data-dependent
# and may therefore vary dynamically.
self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
示例6: testSegmentMinGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def testSegmentMinGradient(self):
data = tf.constant([1.0, 2.0, 3.0], dtype=tf.float32)
segment_ids = tf.constant([0, 0, 1], dtype=tf.int64)
segment_min = tf.segment_min(data, segment_ids)
with self.test_session():
error = tf.test.compute_gradient_error(data, [3], segment_min, [2])
self.assertLess(error, 1e-4)
示例7: testSegmentMinGradientWithTies
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def testSegmentMinGradientWithTies(self):
inputs = tf.constant([1.0], dtype=tf.float32)
data = tf.concat(0, [inputs, inputs])
segment_ids = tf.constant([0, 0], dtype=tf.int64)
segment_min = tf.segment_min(data, segment_ids)
with self.test_session():
error = tf.test.compute_gradient_error(inputs, [1], segment_min, [1])
self.assertLess(error, 1e-4)
示例8: get_len
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def get_len(sen, eos):
indices = tf.where(tf.equal(sen, eos))
result = tf.segment_min(indices[:,1], indices[:,0])
return result
示例9: _segments_1d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_min [as 別名]
def _segments_1d(values, mode, name=None):
"""Labels consecutive runs of the same value.
Args:
values: 1D tensor of any type.
mode: The SegmentsMode. Returns the start of each segment (STARTS), or the
rounded center of each segment (CENTERS).
name: Optional name for the op.
Returns:
run_centers: int32 tensor; the centers of each run with the same consecutive
values.
run_lengths: int32 tensor; the lengths of each run.
Raises:
ValueError: if mode is not recognized.
"""
with tf.name_scope(name, "segments", [values]):
def do_segments(values):
"""Actually does segmentation.
Args:
values: 1D tensor of any type. Non-empty.
Returns:
run_centers: int32 tensor
run_lengths: int32 tensor
Raises:
ValueError: if mode is not recognized.
"""
length = tf.shape(values)[0]
values = tf.convert_to_tensor(values)
# The first run has id 0, so we don't increment the id.
# Otherwise, the id is incremented when the value changes.
run_start_bool = tf.concat(
[[False], tf.not_equal(values[1:], values[:-1])], axis=0)
# Cumulative sum the run starts to get the run ids.
segment_ids = tf.cumsum(tf.cast(run_start_bool, tf.int32))
if mode is SegmentsMode.STARTS:
run_centers = tf.segment_min(tf.range(length), segment_ids)
elif mode is SegmentsMode.CENTERS:
run_centers = tf.segment_mean(
tf.cast(tf.range(length), tf.float32), segment_ids)
run_centers = tf.cast(tf.floor(run_centers), tf.int32)
else:
raise ValueError("Unexpected mode: %s" % mode)
run_lengths = tf.segment_sum(tf.ones([length], tf.int32), segment_ids)
return run_centers, run_lengths
def empty_segments():
return (tf.zeros([0], tf.int32), tf.zeros([0], tf.int32))
return tf.cond(
tf.greater(tf.shape(values)[0], 0), lambda: do_segments(values),
empty_segments)