本文整理匯總了Python中tensorflow.segment_max方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.segment_max方法的具體用法?Python tensorflow.segment_max怎麽用?Python tensorflow.segment_max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.segment_max方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def testGradient(self):
shape = [4, 4]
indices = [0, 1, 2, 2]
for tf_op in [tf.segment_sum,
tf.segment_mean,
tf.segment_min,
tf.segment_max]:
with self.test_session():
tf_x, np_x = self._input(shape, dtype=tf.float64)
s = tf_op(data=tf_x, segment_ids=indices)
jacob_t, jacob_n = tf.test.compute_gradient(
tf_x,
shape,
s,
[3, 4],
x_init_value=np_x.astype(np.double),
delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
示例2: padded_segment_reduce
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def padded_segment_reduce(vecs, segment_inds, num_segments, reduction_mode):
"""
Reduce the vecs with segment_inds and reduction_mode
Input:
vecs: A Tensor of shape (batch_size, vec_dim)
segment_inds: A Tensor containing the segment index of each
vec row, should agree with vecs in shape[0]
Output:
A tensor of shape (vec_dim)
"""
if reduction_mode == 'max':
print('USING MAX POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_max(vecs, segment_inds)
elif reduction_mode == 'mean':
print('USING AVG POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_mean(vecs, segment_inds)
vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]])
return vecs_reduced
示例3: test_SegmentMax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def test_SegmentMax(self):
t = tf.segment_max(self.random(4, 2, 3), np.array([0, 1, 1, 2]))
self.check(t)
示例4: testValues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
# Each item is np_op1, np_op2, tf_op
ops_list = [(np.add, None, tf.segment_sum),
(self._mean_cum_op, self._mean_reduce_op,
tf.segment_mean),
(np.ndarray.__mul__, None, tf.segment_prod),
(np.minimum, None, tf.segment_min),
(np.maximum, None, tf.segment_max)]
# A subset of ops has been enabled for complex numbers
complex_ops_list = [(np.add, None, tf.segment_sum),
(np.ndarray.__mul__, None, tf.segment_prod)]
n = 10
shape = [n, 2]
indices = [i // 3 for i in range(n)]
for dtype in dtypes:
if dtype in (tf.complex64, tf.complex128):
curr_ops_list = complex_ops_list
else:
curr_ops_list = ops_list
with self.test_session(use_gpu=False):
tf_x, np_x = self._input(shape, dtype=dtype)
for np_op1, np_op2, tf_op in curr_ops_list:
np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2)
s = tf_op(data=tf_x, segment_ids=indices)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
# NOTE(mrry): The static shape inference that computes
# `tf_ans.shape` can only infer that sizes from dimension 1
# onwards, because the size of dimension 0 is data-dependent
# and may therefore vary dynamically.
self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
示例5: testSegmentMaxGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def testSegmentMaxGradient(self):
data = tf.constant([1.0, 2.0, 3.0], dtype=tf.float32)
segment_ids = tf.constant([0, 0, 1], dtype=tf.int64)
segment_max = tf.segment_max(data, segment_ids)
with self.test_session():
error = tf.test.compute_gradient_error(data, [3], segment_max, [2])
self.assertLess(error, 1e-4)
示例6: testSegmentMaxGradientWithTies
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def testSegmentMaxGradientWithTies(self):
inputs = tf.constant([1.0], dtype=tf.float32)
data = tf.concat(0, [inputs, inputs])
segment_ids = tf.constant([0, 0], dtype=tf.int64)
segment_max = tf.segment_max(data, segment_ids)
with self.test_session():
error = tf.test.compute_gradient_error(inputs, [1], segment_max, [1])
self.assertLess(error, 1e-4)
示例7: segment_logsumexp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import segment_max [as 別名]
def segment_logsumexp(xs, segments):
""" Similar tf.segment_sum but compute logsumexp rather then sum """
# Stop gradients following the implementation of tf.reduce_logsumexp
maxs = tf.stop_gradient(tf.reduce_max(xs, axis=1))
segment_maxes = tf.segment_max(maxs, segments)
xs -= tf.expand_dims(tf.gather(segment_maxes, segments), 1)
sums = tf.reduce_sum(tf.exp(xs), axis=1)
return tf.log(tf.segment_sum(sums, segments)) + segment_maxes