本文整理匯總了Python中tensorflow.scatter_nd_update方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.scatter_nd_update方法的具體用法?Python tensorflow.scatter_nd_update怎麽用?Python tensorflow.scatter_nd_update使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.scatter_nd_update方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testScatterRepeatIndices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def testScatterRepeatIndices(self):
"""This tests scatter_add using indices that repeat."""
self._ScatterRepeatIndicesTest(_NumpyAdd, tf.scatter_nd_add)
self._ScatterRepeatIndicesTest(_NumpySub, tf.scatter_nd_sub)
# TODO(simister): Re-enable once binary size increase due to
# extra templating is back under control.
# self._ScatterRepeatIndicesTest(_NumpyMul, tf.scatter_nd_mul)
# self._ScatterRepeatIndicesTest(_NumpyDiv, tf.scatter_nd_div)
# TODO(simister): Re-enable once binary size increase due to
# extra templating is back under control and this op is re-enabled
# def testBooleanScatterUpdate(self):
# with self.test_session(use_gpu=False) as session:
# var = tf.Variable([True, False])
# update0 = tf.scatter_nd_update(var, [[1]], [True])
# update1 = tf.scatter_nd_update(
# var, tf.constant(
# [[0]], dtype=tf.int64), [False])
# var.initializer.run()
# session.run([update0, update1])
# self.assertAllEqual([False, True], var.eval())
示例2: testScatterOutOfRangeCpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def testScatterOutOfRangeCpu(self):
# TODO(simister): Re-enable once binary size increase due to
# scatter_nd ops is under control.
# tf.scatter_nd_mul, tf.scatter_nd_div,
for op in (tf.scatter_nd_add, tf.scatter_nd_sub, tf.scatter_nd_update):
params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
updates = np.array([-3, -4, -5]).astype(np.float32)
with self.test_session(use_gpu=False):
ref = tf.Variable(params)
ref.initializer.run()
# Indices all in range, no problem.
indices = np.array([[2], [0], [5]])
op(ref, indices, updates).eval()
# Test some out of range errors.
indices = np.array([[-1], [0], [5]])
with self.assertRaisesOpError(
r"Invalid indices: \[0,0\] = \[-1\] is not in \[0, 6\)"):
op(ref, indices, updates).eval()
indices = np.array([[2], [0], [6]])
with self.assertRaisesOpError(
r"Invalid indices: \[2,0\] = \[6\] is not in \[0, 6\)"):
op(ref, indices, updates).eval()
示例3: _disabledTestScatterOutOfRangeGpu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def _disabledTestScatterOutOfRangeGpu(self):
if not tf.test.IsBuiltWithCuda():
return
# TODO(simister): Re-enable once binary size increase due to
# scatter_nd ops is under control.
# tf.scatter_nd_mul, tf.scatter_nd_div,
for op in (tf.scatter_nd_add, tf.scatter_nd_sub, tf.scatter_nd_update):
params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
updates = np.array([-3, -4, -5]).astype(np.float32)
# With GPU, the code ignores indices that are out of range.
# We don't test the implementation; just test there's no failures.
with self.test_session(force_gpu=True):
ref = tf.Variable(params)
ref.initializer.run()
# Indices all in range, no problem.
indices = np.array([2, 0, 5])
op(ref, indices, updates).eval()
# Indicies out of range should not fail.
indices = np.array([-1, 0, 5])
op(ref, indices, updates).eval()
indices = np.array([2, 0, 6])
op(ref, indices, updates).eval()
示例4: attention_vocab
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def attention_vocab(attention_weight, sentence_index):
''' return indices and updates for tf.scatter_nd_update
Args:
attention_weight : [batch, length]
sentence_index : [batch, length]
'''
batch_size = attention_weight.get_shape()[0]
sentencen_length = attention_weight.get_shape()[-1]
batch_index = tf.range(batch_size)
batch_index = tf.expand_dims(batch_index, [1])
batch_index = tf.tile(batch_index, [1, sentence_length])
batch_index = tf.reshape(batch_index, [-1, 1]) # looks like [0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,....]
zeros = tf.zeros([batch_size, self._output_size])
flat_index = tf.reshape(sentence_index, [-1, 1])
indices = tf.concat([batch_index, flat_index], 1)
updates = tf.reshape(attention_weight, [-1])
p_attn = tf.scatter_nd_update(zeros, indices, updates)
return p_attn
示例5: append
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def append(self, transitions, rows=None):
"""Append a batch of transitions to rows of the memory.
Args:
transitions: Tuple of transition quantities with batch dimension.
rows: Episodes to append to, defaults to all.
Returns:
Operation.
"""
rows = tf.range(self._capacity) if rows is None else rows
assert rows.shape.ndims == 1
assert_capacity = tf.assert_less(
rows, self._capacity,
message='capacity exceeded')
with tf.control_dependencies([assert_capacity]):
assert_max_length = tf.assert_less(
tf.gather(self._length, rows), self._max_length,
message='max length exceeded')
append_ops = []
with tf.control_dependencies([assert_max_length]):
for buffer_, elements in zip(self._buffers, transitions):
timestep = tf.gather(self._length, rows)
indices = tf.stack([rows, timestep], 1)
append_ops.append(tf.scatter_nd_update(buffer_, indices, elements))
with tf.control_dependencies(append_ops):
episode_mask = tf.reduce_sum(tf.one_hot(
rows, self._capacity, dtype=tf.int32), 0)
return self._length.assign_add(episode_mask)
示例6: testVariableRankUpdate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def testVariableRankUpdate(self):
self._VariableRankTests(_NumpyUpdate, tf.scatter_nd_update)
示例7: testRank3ValidShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def testRank3ValidShape(self):
indices = tf.zeros([2, 2, 2], tf.int32)
updates = tf.zeros([2, 2, 2], tf.int32)
shape = np.array([2, 2, 2])
self.assertAllEqual(
tf.scatter_nd(indices, updates, shape).get_shape().as_list(), shape)
ref = tf.Variable(tf.zeros(shape, tf.int32))
self.assertAllEqual(
tf.scatter_nd_update(ref, indices, updates).get_shape().as_list(),
shape)
示例8: testRank3InvalidShape1
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def testRank3InvalidShape1(self):
indices = tf.zeros([3, 2, 2], tf.int32)
updates = tf.zeros([2, 2, 2], tf.int32)
shape = np.array([2, 2, 2])
with self.assertRaisesWithPredicateMatch(
ValueError, "The outer \\d+ dimensions of indices\\.shape="):
tf.scatter_nd(indices, updates, shape)
ref = tf.Variable(tf.zeros(shape, tf.int32))
with self.assertRaisesWithPredicateMatch(
ValueError, "The outer \\d+ dimensions of indices\\.shape="):
tf.scatter_nd_update(ref, indices, updates)
示例9: append
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def append(self, transitions, rows=None):
"""Append a batch of transitions to rows of the memory.
Args:
transitions: Tuple of transition quantities with batch dimension.
rows: Episodes to append to, defaults to all.
Returns:
Operation.
"""
rows = tf.range(self._capacity) if rows is None else rows
assert rows.shape.ndims == 1
assert_capacity = tf.assert_less(
rows, self._capacity,
message='capacity exceeded')
with tf.control_dependencies([assert_capacity]):
assert_max_length = tf.assert_less(
tf.gather(self._length, rows), self._max_length,
message='max length exceeded')
with tf.control_dependencies([assert_max_length]):
timestep = tf.gather(self._length, rows)
indices = tf.stack([rows, timestep], 1)
append_ops = tools.nested.map(
lambda var, val: tf.scatter_nd_update(var, indices, val),
self._buffers, transitions, flatten=True)
with tf.control_dependencies(append_ops):
episode_mask = tf.reduce_sum(tf.one_hot(
rows, self._capacity, dtype=tf.int32), 0)
return self._length.assign_add(episode_mask)
示例10: inner_loop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def inner_loop(self, i, j, _):
body = tf.cond(tf.greater(self.array[j-1], self.array[j]),
lambda: tf.scatter_nd_update(self.array, [[j-1],[j]], [self.array[j],self.array[j-1]]),
lambda: self.array)
return i, tf.subtract(j, 1), body
示例11: inner_loop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd_update [as 別名]
def inner_loop(self, i, j, _):
return i, tf.subtract(j, 1), tf.scatter_nd_update(self.array, [[j-1],[j]], [self.array[j],self.array[j-1]])