當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.scatter_nd方法代碼示例

本文整理匯總了Python中tensorflow.scatter_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.scatter_nd方法的具體用法?Python tensorflow.scatter_nd怎麽用?Python tensorflow.scatter_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.scatter_nd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: restore

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def restore(self, x):
    """Add padding back to the given tensor.

    Args:
      x (tf.Tensor): of shape [dim_compressed,...]

    Returns:
      a tensor of shape [dim_origin,...] with dim_compressed >= dim_origin. The
      dim is restored from the original reference tensor
    """
    with tf.name_scope("pad_reduce/restore"):
      x = tf.scatter_nd(
          indices=self.nonpad_ids,
          updates=x,
          shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0),
      )
    return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:expert_utils.py

示例2: restore

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def restore(self, x):
        """Add padding back to the given tensor.

        Args:
            x: A Tensor of shape [dim_compressed,...]

        Returns:
            A tensor of shape [dim_origin,...] with
            dim_compressed >= dim_origin. The
            dim is restored from the original reference tensor
        """
        with tf.name_scope("pad_reduce/restore"):
            x = tf.scatter_nd(
                indices=self.nonpad_ids,
                updates=x,
                shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0),
            )
        return x 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:20,代碼來源:transformer_utils.py

示例3: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def decode(self,
             encoded_tensors,
             decode_params,
             num_summands=None,
             shape=None):
    """See base class."""
    del decode_params, num_summands  # Unused.

    indices = encoded_tensors[self.ENCODED_INDICES_KEY]
    non_zero_x = encoded_tensors[self.ENCODED_VALUES_KEY]

    indices = tf.expand_dims(indices, 1)
    shape = tf.cast(shape, indices.dtype)
    decoded_x = tf.scatter_nd(indices=indices, updates=non_zero_x, shape=shape)

    return decoded_x 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:18,代碼來源:misc.py

示例4: batch_skew

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def batch_skew(vec, batch_size=None):
    """
    vec is N x 3, batch_size is int

    returns N x 3 x 3. Skew_sym version of each matrix.
    """
    with tf.variable_scope("batch_skew", [vec]):
        if batch_size is None:
            batch_size = vec.shape.as_list()[0]
        col_inds = tf.constant([1, 2, 3, 5, 6, 7])
        indices = tf.reshape(
            tf.reshape(tf.range(0, batch_size) * 9, [-1, 1]) + col_inds,
            [-1, 1])
        updates = tf.reshape(
            tf.stack(
                [
                    -vec[:, 2], vec[:, 1], vec[:, 2], -vec[:, 0], -vec[:, 1],
                    vec[:, 0]
                ],
                axis=1), [-1])
        out_shape = [batch_size * 9]
        res = tf.scatter_nd(indices, updates, out_shape)
        res = tf.reshape(res, [batch_size, 3, 3])

        return res 
開發者ID:blzq,項目名稱:tf_smpl,代碼行數:27,代碼來源:batch_lbs.py

示例5: LandmarkImageLayer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def LandmarkImageLayer(Landmarks):
    
    def draw_landmarks(L):
        def draw_landmarks_helper(Point):
            intLandmark = tf.to_int32(Point)
            locations = Offsets + intLandmark
            dxdy = Point - tf.to_float(intLandmark)
            offsetsSubPix = tf.to_float(Offsets) - dxdy
            vals = 1 / (1 + tf.norm(offsetsSubPix, axis=2))
            img = tf.scatter_nd(locations, vals, shape=(IMGSIZE, IMGSIZE))
            return img
        Landmark = tf.reverse(tf.reshape(L, [-1,2]), [-1])
        # Landmark = tf.reshape(L, (-1, 2))
        Landmark = tf.clip_by_value(Landmark, HalfSize, IMGSIZE - 1 - HalfSize)
        # Ret = 1 / (tf.norm(tf.map_fn(DoIn,Landmarks),axis = 3) + 1)
        Ret = tf.map_fn(draw_landmarks_helper, Landmark)
        Ret = tf.reshape(tf.reduce_max(Ret, axis=0), [IMGSIZE, IMGSIZE, 1])
        return Ret
    return tf.map_fn(draw_landmarks, Landmarks) 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:21,代碼來源:layers.py

示例6: reorder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def reorder(updates, sd_indices, argsort_axis=1):
	"""
	updates: [N, M]
	"""
	def prepare_fd(fd_indices, sd_dims):
		fd_indices = tf.expand_dims(fd_indices, 1)
		fd_indices = tf.tile(fd_indices, [1, sd_dims])
		return fd_indices

	# define the updates
	sd_dims = tf.shape(updates)[1]
	fd_indices_range = tf.range(0, limit=tf.shape(updates)[0])

	# define the indices
	indices1 = tf.stack((prepare_fd(fd_indices_range, sd_dims), sd_indices), axis=2)
	shape = tf.shape(updates)
	scatter1 = tf.scatter_nd(indices1, updates, shape)
	return scatter1 
開發者ID:yyht,項目名稱:BERT,代碼行數:20,代碼來源:token_generator_gumbel.py

示例7: max_unpool_with_argmax

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def max_unpool_with_argmax(bottom, mask, output_shape=None):
    with tf.name_scope('max_unpool_with_argmax'):
        ksize = [1, 2, 2, 1]
        input_shape = bottom.get_shape().as_list()
        #  calculation new shape
        if output_shape is None:
            output_shape = (input_shape[0],
                            input_shape[1] * ksize[1],
                            input_shape[2] * ksize[2],
                            input_shape[3])
        # calculation indices for batch, height, width and feature maps
        one_like_mask = tf.ones_like(mask)
        batch_range = tf.reshape(tf.range(output_shape[0],
                                          dtype=tf.int64),
                                 shape=[input_shape[0], 1, 1, 1])
        b = one_like_mask * batch_range
        y = mask // (output_shape[2] * output_shape[3])
        x = mask % (output_shape[2] * output_shape[3]) // output_shape[3]
        feature_range = tf.range(output_shape[3], dtype=tf.int64)
        f = one_like_mask * feature_range
        # transpose indices & reshape update values to one dimension
        updates_size = tf.size(bottom)
        indices = tf.transpose(tf.reshape(tf.stack([b, y, x, f]), [4, updates_size]))
        values = tf.reshape(bottom, [updates_size])
        return tf.scatter_nd(indices, values, output_shape) 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:27,代碼來源:segnet_vgg.py

示例8: fock_state

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def fock_state(n, cutoff, pure=True, batched=False):
    """creates a single mode input Fock state"""
    if not isinstance(n, (np.ndarray, int)):
        raise ValueError("'n' is expected to be either an int or a numpy array")
    if batched:
        batch_size = n.shape[0]
        idxs = [(b, f) for (b, f) in zip(range(batch_size), n)]
        values = [1.0] * batch_size
        shape = [batch_size, cutoff]
    else:
        idxs = [(n,)]
        values = [1.0]
        shape = [cutoff]
    fock_sparse = tf.scatter_nd(idxs, values, shape)
    fock = tf.cast(fock_sparse, def_type)
    if not pure:
        fock = mixed(fock, batched)
    return fock 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:20,代碼來源:ops.py

示例9: unpool

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def unpool(pool, ind, shape, ksize=[1, 2, 2, 1], scope=None):
    with tf.name_scope(scope):
        input_shape =  tf.shape(pool)
        output_shape = [input_shape[0], input_shape[1] * ksize[1], input_shape[2] * ksize[2], input_shape[3]]
        flat_input_size = tf.cumprod(input_shape)[-1]
        flat_output_shape = tf.stack([output_shape[0], output_shape[1] * output_shape[2] * output_shape[3]])
        pool_ = tf.reshape(pool, tf.stack([flat_input_size]))
        batch_range = tf.reshape(tf.range(tf.cast(output_shape[0], tf.int64), dtype=ind.dtype),
                                shape=tf.stack([input_shape[0], 1, 1, 1]))
        b = tf.ones_like(ind) * batch_range
        b = tf.reshape(b, tf.stack([flat_input_size, 1]))
        ind_ = tf.reshape(ind, tf.stack([flat_input_size, 1]))
        ind_ = tf.concat([b, ind_], 1)
        ret = tf.scatter_nd(ind_, pool_, shape=tf.cast(flat_output_shape, tf.int64))
        ret = tf.reshape(ret, tf.stack(output_shape))
        ret = tf.reshape(ret, shape=shape)
        return ret 
開發者ID:SaoYan,項目名稱:bgsCNN,代碼行數:19,代碼來源:utilities.py

示例10: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids):
        (finished, base_next_inputs, state) = super().next_inputs(
            time=time, outputs=outputs, state=state, sample_ids=sample_ids
        )

        def maybe_sample():
            """Perform scheduled sampling."""
            where_sampling = tf.cast(tf.where(sample_ids > -1), tf.int32)
            where_not_sampling = tf.cast(tf.where(sample_ids <= -1), tf.int32)
            sample_ids_sampling = tf.gather_nd(sample_ids, where_sampling)
            inputs_not_sampling = tf.gather_nd(base_next_inputs, where_not_sampling)
            sampled_next_inputs = self.embedding_fn(sample_ids_sampling)
            base_shape = tf.shape(base_next_inputs)
            return tf.scatter_nd(
                indices=where_sampling, updates=sampled_next_inputs, shape=base_shape
            ) + tf.scatter_nd(
                indices=where_not_sampling,
                updates=inputs_not_sampling,
                shape=base_shape,
            )

        all_finished = tf.reduce_all(finished)
        next_inputs = tf.cond(all_finished, lambda: base_next_inputs, maybe_sample)
        return (finished, next_inputs, state) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:26,代碼來源:sampler.py

示例11: batch_skew

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def batch_skew(vec, batch_size=None):
    """
    vec is N x 3, batch_size is int

    returns N x 3 x 3. Skew_sym version of each matrix.
    """
    with tf.name_scope("batch_skew", values=[vec]):
        if batch_size is None:
            batch_size = vec.shape.as_list()[0]
        col_inds = tf.constant([1, 2, 3, 5, 6, 7])
        indices = tf.reshape(
            tf.reshape(tf.range(0, batch_size) * 9, [-1, 1]) + col_inds,
            [-1, 1])
        updates = tf.reshape(
            tf.stack(
                [
                    -vec[:, 2], vec[:, 1], vec[:, 2], -vec[:, 0], -vec[:, 1],
                    vec[:, 0]
                ],
                axis=1), [-1])
        out_shape = [batch_size * 9]
        res = tf.scatter_nd(indices, updates, out_shape)
        res = tf.reshape(res, [batch_size, 3, 3])

        return res 
開發者ID:jasonyzhang,項目名稱:phd,代碼行數:27,代碼來源:batch_lbs.py

示例12: scatter_add_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def scatter_add_tensor(tensor, indices, out_shape, name=None):
    """
    Code taken from https://github.com/tensorflow/tensorflow/issues/2358 and adapted.

    Adds up elements in tensor that have the same value in indices.

    Must have shape(tensor)[0] == shape(indices)[0].
    :param tensor: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16,
        int16, int8, complex64, complex128, qint8, quint8, qint32, half.
    :param indices: 1-D tensor of indices.
    :param out_shape: The shape of the output tensor. Must have out_shape[1] == shape(tensor)[1].
    :param name: A name for the operation (optional).
    :return: Tensor with same datatype as tensor and shape out_shape.
    """
    with tf.name_scope(name, 'scatter_add_tensor') as scope:
        indices = tf.expand_dims(indices, -1)
        # the scatter_nd function adds up values for duplicate indices what is exactly what we want
        return tf.scatter_nd(indices, tensor, out_shape, name=scope) 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:20,代碼來源:util.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def __init__(self, features, graph_adj, targets, nodes_to_consider, labelled_nodes, prop_type, return_prob):

        if prop_type not in ['vanilla', 'smoothed']:
            raise ValueError('Unsupported propagation type.')
        self.prop_type = prop_type

        # if running on Planetoid data these typecasts are necessary
        if isinstance(labelled_nodes, range):
            labelled_nodes = np.array(list(labelled_nodes), dtype=np.int64)
        if targets.dtype != np.float32:
            targets = targets.astype(np.float32)

        super().__init__(features, graph_adj, tf.gather(targets, nodes_to_consider))
        self.labelled_nodes = tf.constant(labelled_nodes, dtype=tf.int64)
        self.initial_predicted_labels = tf.scatter_nd(tf.expand_dims(self.labelled_nodes, -1),
                                                      targets[labelled_nodes], shape=targets.shape)
        self.predicted_labels = tf.Variable(self.initial_predicted_labels, dtype=tf.float32, name="predicted_labels")

        self.nodes_to_consider = nodes_to_consider
        self.num_nodes = int(self.graph_adj.get_shape()[0])
        self.num_classes = int(self.targets.get_shape()[1])

        self.return_prob = return_prob

        self._build_model_graphs() 
開發者ID:shchur,項目名稱:gnn-benchmark,代碼行數:27,代碼來源:labelprop.py

示例14: testScatterOutOfRangeCpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def testScatterOutOfRangeCpu(self):
    # TODO(simister): Re-enable once binary size increase due to
    # scatter_nd ops is under control.
    #  tf.scatter_nd_mul, tf.scatter_nd_div,
    for op in (tf.scatter_nd_add, tf.scatter_nd_sub, tf.scatter_nd_update):
      params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
      updates = np.array([-3, -4, -5]).astype(np.float32)
      with self.test_session(use_gpu=False):
        ref = tf.Variable(params)
        ref.initializer.run()

        # Indices all in range, no problem.
        indices = np.array([[2], [0], [5]])
        op(ref, indices, updates).eval()

        # Test some out of range errors.
        indices = np.array([[-1], [0], [5]])
        with self.assertRaisesOpError(
            r"Invalid indices: \[0,0\] = \[-1\] is not in \[0, 6\)"):
          op(ref, indices, updates).eval()

        indices = np.array([[2], [0], [6]])
        with self.assertRaisesOpError(
            r"Invalid indices: \[2,0\] = \[6\] is not in \[0, 6\)"):
          op(ref, indices, updates).eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:scatter_nd_ops_test.py

示例15: _disabledTestScatterOutOfRangeGpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scatter_nd [as 別名]
def _disabledTestScatterOutOfRangeGpu(self):
    if not tf.test.IsBuiltWithCuda():
      return
    # TODO(simister): Re-enable once binary size increase due to
    # scatter_nd ops is under control.
    # tf.scatter_nd_mul, tf.scatter_nd_div,
    for op in (tf.scatter_nd_add, tf.scatter_nd_sub, tf.scatter_nd_update):
      params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
      updates = np.array([-3, -4, -5]).astype(np.float32)
      # With GPU, the code ignores indices that are out of range.
      # We don't test the implementation; just test there's no failures.
      with self.test_session(force_gpu=True):
        ref = tf.Variable(params)
        ref.initializer.run()

        # Indices all in range, no problem.
        indices = np.array([2, 0, 5])
        op(ref, indices, updates).eval()

        # Indicies out of range should not fail.
        indices = np.array([-1, 0, 5])
        op(ref, indices, updates).eval()
        indices = np.array([2, 0, 6])
        op(ref, indices, updates).eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:scatter_nd_ops_test.py


注:本文中的tensorflow.scatter_nd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。