本文整理匯總了Python中tensorflow.scalar_summary方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.scalar_summary方法的具體用法?Python tensorflow.scalar_summary怎麽用?Python tensorflow.scalar_summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.scalar_summary方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: define_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def define_summaries(self):
'''Helper function for init_opt'''
all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []}
for k, v in self.log_vars:
if k.startswith('g'):
all_sum['g'].append(tf.scalar_summary(k, v))
elif k.startswith('d'):
all_sum['d'].append(tf.scalar_summary(k, v))
elif k.startswith('hr_g'):
all_sum['hr_g'].append(tf.scalar_summary(k, v))
elif k.startswith('hr_d'):
all_sum['hr_d'].append(tf.scalar_summary(k, v))
elif k.startswith('hist'):
all_sum['hist'].append(tf.histogram_summary(k, v))
self.g_sum = tf.merge_summary(all_sum['g'])
self.d_sum = tf.merge_summary(all_sum['d'])
self.hr_g_sum = tf.merge_summary(all_sum['hr_g'])
self.hr_d_sum = tf.merge_summary(all_sum['hr_d'])
self.hist_sum = tf.merge_summary(all_sum['hist'])
示例2: _activation_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
# tf.histogram_summary(tensor_name + '/activations', x)
tf.summary.histogram(tensor_name + '/activations', x)
# tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
示例3: _setup_training
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _setup_training(self):
"""
Set up a data flow graph for fine tuning
"""
layer_num = self.layer_num
act_func = ACTIVATE_FUNC[self.activate_func]
sigma = self.sigma
lr = self.learning_rate
weights = self.weights
biases = self.biases
data1, data2 = self.data1, self.data2
batch_size = self.batch_size
optimizer = OPTIMIZER[self.optimizer]
with tf.name_scope("training"):
s1 = self._obtain_score(data1, weights, biases, act_func, "1")
s2 = self._obtain_score(data2, weights, biases, act_func, "2")
with tf.name_scope("cost"):
sum_cost = tf.reduce_sum(tf.log(1 + tf.exp(-sigma*(s1-s2))))
self.cost = cost = sum_cost / batch_size
self.optimize = optimizer(lr).minimize(cost)
for n in range(layer_num-1):
tf.histogram_summary("weight"+str(n), weights[n])
tf.histogram_summary("bias"+str(n), biases[n])
tf.scalar_summary("cost", cost)
示例4: setup_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def setup_summaries(self):
episode_reward = tf.Variable(0.)
s1 = tf.scalar_summary("Episode Reward " + str(self.actor_id), episode_reward)
if self.alg_type == "a3c":
summary_vars = [episode_reward]
else:
episode_ave_max_q = tf.Variable(0.)
s2 = tf.scalar_summary("Max Q Value " + str(self.actor_id), episode_ave_max_q)
logged_epsilon = tf.Variable(0.)
s3 = tf.scalar_summary("Epsilon " + str(self.actor_id), logged_epsilon)
summary_vars = [episode_reward, episode_ave_max_q, logged_epsilon]
summary_placeholders = [tf.placeholder("float") for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
with tf.control_dependencies(update_ops):
summary_ops = tf.merge_all_summaries()
return summary_placeholders, update_ops, summary_ops
示例5: _activation_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % LSPGlobals.TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
示例6: _add_loss_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _add_loss_summaries(total_loss):
"""Add summaries for losses in DeepPose model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summmary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def __init__(self, sess, data, runtime_base_dir, model_dir, variables, max_to_keep=20):
self.sess = sess
self.reset()
with tf.variable_scope('t'):
self.t_op = tf.Variable(0, trainable=False, name='t')
self.t_add_op = self.t_op.assign_add(1)
self.model_dir = os.path.join(runtime_base_dir, model_dir)
self.saver = tf.train.Saver(variables + [self.t_op], max_to_keep=max_to_keep)
self.writer = tf.train.SummaryWriter('%s/logs/%s' % (runtime_base_dir, model_dir), self.sess.graph)
with tf.variable_scope('summary'):
scalar_summary_tags = ['train_l', 'test_l']
self.summary_placeholders = {}
self.summary_ops = {}
for tag in scalar_summary_tags:
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_'))
self.summary_ops[tag] = tf.scalar_summary('%s/%s' % (data, tag), self.summary_placeholders[tag])
示例8: _add_train_op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _add_train_op(self):
params = self._params
self._lr_rate = tf.maximum(
params.min_lr,
tf.train.exponential_decay(params.lr, self._global_step, 30000, 0.98))
tvars = tf.trainable_variables()
# use reserved gpu for gradient computation
with tf.device(self._get_gpu(self._num_gpus-1)):
grads, global_norm = tf.clip_by_global_norm(
tf.gradients(self._loss, tvars), params.max_grad_norm)
tf.scalar_summary('global_norm', global_norm)
optimizer = tf.train.AdamOptimizer(self._lr_rate)
tf.scalar_summary('learning rate', self._lr_rate)
with tf.device(self._next_device()):
self._train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self._global_step, name='train_step')
self._summaries = tf.merge_all_summaries()
return self._train_op, self._loss,
示例9: _add_loss_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _add_loss_summaries(total_loss):
"""Add summaries for losses in model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summmary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
示例10: accuracy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def accuracy(logits, dense_labels):
seen_german = tf.Variable(0, trainable=False)
seen_english = tf.Variable(0, trainable=False)
x = tf.nn.softmax(logits)
correct_pred = tf.equal(tf.argmax(x, 1), tf.argmax(dense_labels, 1))
german_samples = tf.equal(tf.constant(1, dtype="int64"), tf.argmax(dense_labels, 1))
german_accuracy = tf.reduce_mean(tf.cast(tf.gather(correct_pred, tf.where(german_samples)), tf.float32))
sum_german_samples = seen_german.assign_add(tf.reduce_sum(tf.cast(tf.gather(dense_labels, tf.where(german_samples)), tf.int32)))
tf.scalar_summary("german_accuracy", german_accuracy)
english_samples = tf.equal(tf.constant(0, dtype="int64"), tf.argmax(dense_labels, 1))
english_accuracy = tf.reduce_mean(tf.cast(tf.gather(correct_pred, tf.where(english_samples)), tf.float32))
sum_english_samples = seen_english.assign_add(tf.reduce_sum(tf.cast(tf.gather(dense_labels, tf.where(english_samples)), tf.int32)))
tf.scalar_summary("english_accuracy", english_accuracy)
german_predictions = tf.equal(tf.constant(1, dtype="int64"), tf.argmax(x, 1))
german_predictions_count = tf.reduce_sum(tf.cast(german_predictions, tf.int32))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.scalar_summary("accuracy", accuracy)
return accuracy, english_accuracy, german_accuracy, german_predictions_count, sum_english_samples, sum_german_samples
示例11: _init_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _init_summaries(self):
if self.is_train:
logdir = os.path.join(SUMMARY_PATH, self.log_name, 'train')
self.summary_writer = tf.summary.FileWriter(logdir)
self.summary_writer_by_points = [tf.summary.FileWriter(os.path.join(logdir, 'point_%02d' % i))
for i in range(16)]
tf.scalar_summary('Average euclidean distance', self.euclidean_dist, collections = [KEY_SUMMARIES])
for i in range(16):
tf.scalar_summary('Joint euclidean distance', self.euclidean_dist_per_joint[i],
collections = [KEY_SUMMARIES_PER_JOINT[i]])
self.create_summary_from_weights()
self.ALL_SUMMARIES = tf.merge_all_summaries(KEY_SUMMARIES)
self.SUMMARIES_PER_JOINT = [tf.merge_all_summaries(KEY_SUMMARIES_PER_JOINT[i]) for i in range(16)]
else:
logdir = os.path.join(SUMMARY_PATH, self.log_name, 'test')
self.summary_writer = tf.summary.FileWriter(logdir)
示例12: variable_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def variable_summaries(var, name):
"""
Attach a lot of summaries to a Tensor for Tensorboard visualization.
Ref: https://www.tensorflow.org/versions/r0.11/how_tos/summaries_and_tensorboard/index.html
:param var: Variable to summarize
:param name: Summary name
"""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.scalar_summary('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.scalar_summary('stddev/' + name, stddev)
tf.scalar_summary('max/' + name, tf.reduce_max(var))
tf.scalar_summary('min/' + name, tf.reduce_min(var))
tf.histogram_summary(name, var)
示例13: _activation_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measures the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
示例14: _add_loss_summaries
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
示例15: _get_train_ops
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_summary [as 別名]
def _get_train_ops(self, features, _):
(_,
_,
losses,
training_op) = clustering_ops.KMeans(
self._parse_tensor_or_dict(features),
self._num_clusters,
self._training_initial_clusters,
self._distance_metric,
self._use_mini_batch,
random_seed=self._random_seed,
kmeans_plus_plus_num_retries=self.kmeans_plus_plus_num_retries
).training_graph()
incr_step = tf.assign_add(tf.contrib.framework.get_global_step(), 1)
self._loss = tf.reduce_sum(losses)
tf.scalar_summary('loss/raw', self._loss)
training_op = with_dependencies([training_op, incr_step], self._loss)
return training_op, self._loss