當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.scalar_mul方法代碼示例

本文整理匯總了Python中tensorflow.scalar_mul方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.scalar_mul方法的具體用法?Python tensorflow.scalar_mul怎麽用?Python tensorflow.scalar_mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.scalar_mul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: focal_loss_

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def focal_loss_(labels, pred, anchor_state, alpha=0.25, gamma=2.0):

    # filter out "ignore" anchors
    indices = tf.reshape(tf.where(tf.not_equal(anchor_state, -1)), [-1, ])
    labels = tf.gather(labels, indices)
    pred = tf.gather(pred, indices)

    logits = tf.cast(pred, tf.float32)
    onehot_labels = tf.cast(labels, tf.float32)
    ce = tf.nn.sigmoid_cross_entropy_with_logits(labels=onehot_labels, logits=logits)
    predictions = tf.sigmoid(logits)
    predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1.-predictions)
    alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
    alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1-alpha_t)
    loss = ce * tf.pow(1-predictions_pt, gamma) * alpha_t
    positive_mask = tf.cast(tf.greater(labels, 0), tf.float32)
    return tf.reduce_sum(loss) / tf.maximum(tf.reduce_sum(positive_mask), 1) 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:19,代碼來源:losses.py

示例2: clip_norm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def clip_norm(g, c, n):
    if c > 0:
        if K.backend() == 'tensorflow':
            import tensorflow as tf
            import copy
            condition = n >= c
            then_expression = tf.scalar_mul(c / n, g)
            else_expression = g

            if hasattr(then_expression, 'get_shape'):
                g_shape = copy.copy(then_expression.get_shape())
            elif hasattr(then_expression, 'dense_shape'):
                g_shape = copy.copy(then_expression.dense_shape)
            if condition.dtype != tf.bool:
                condition = tf.cast(condition, 'bool')
            g = K.tensorflow_backend.control_flow_ops.cond(
                condition, lambda: then_expression, lambda: else_expression)
            if hasattr(then_expression, 'get_shape'):
                g.set_shape(g_shape)
            elif hasattr(then_expression, 'dense_shape'):
                g._dense_shape = g_shape
        else:
            g = K.switch(n >= c, g * c / n, g)
    return g 
開發者ID:danieljl,項目名稱:keras-image-captioning,代碼行數:26,代碼來源:keras_patches.py

示例3: compute_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def compute_gradients(self, loss, var_list=None, *args, **kwargs):
        if var_list is None:
            var_list = (
                    tf.trainable_variables() +
                    tf.get_collection(tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))

        replaced_list = var_list

        if self._scale != 1.0:
            loss = tf.scalar_mul(self._scale, loss)

        gradvar = self._optimizer.compute_gradients(loss, replaced_list, *args, **kwargs)

        final_gradvar = []
        for orig_var, (grad, var) in zip(var_list, gradvar):
            if var is not orig_var:
                grad = tf.cast(grad, orig_var.dtype)
            if self._scale != 1.0:
                grad = tf.scalar_mul(1. / self._scale, grad)
            final_gradvar.append((grad, orig_var))

        return final_gradvar 
開發者ID:aws,項目名稱:sagemaker-tensorflow-training-toolkit,代碼行數:24,代碼來源:train_imagenet_resnet_hvd.py

示例4: difference

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def difference(predicted, target, loss_difference, epsilon=1e-2):
    if loss_difference == LossDifferenceEnum.DIFFERENCE:
      result = tf.subtract(predicted, target)
    elif loss_difference == LossDifferenceEnum.ABSOLUTE:
      difference = tf.subtract(predicted, target)
      result = tf.abs(difference)
    elif loss_difference == LossDifferenceEnum.SMOOTH_ABSOLUTE:
      difference = tf.subtract(predicted, target)
      absolute_difference = tf.abs(difference)
      result = tf.where(
          tf.less(absolute_difference, 1),
          tf.scalar_mul(0.5, tf.square(absolute_difference)),
          tf.subtract(absolute_difference, 0.5))
    elif loss_difference == LossDifferenceEnum.SQUARED:
      result = tf.squared_difference(predicted, target)
    elif loss_difference == LossDifferenceEnum.SMAPE:
      # https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
      absolute_difference = tf.abs(tf.subtract(predicted, target))
      denominator = tf.add(tf.add(tf.abs(predicted), tf.abs(target)), epsilon)
      result = tf.divide(absolute_difference, denominator)
    result = tf.reduce_sum(result, axis=3)
    return result 
開發者ID:DeepBlender,項目名稱:DeepDenoiser,代碼行數:24,代碼來源:LossDifference.py

示例5: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def call(self, inputs, **kwargs):
        if K.ndim(inputs) != 3:
            raise ValueError(
                "Unexpected inputs dimensions %d, expect to be 3 dimensions"
                % (K.ndim(inputs)))

        if inputs.shape[1] != self.num_fields:
            raise ValueError("Mismatch in number of fields {} and \
                 concatenated embeddings dims {}".format(self.num_fields, inputs.shape[1]))

        pairwise_inner_prods = []
        for fi, fj in itertools.combinations(range(self.num_fields), 2):
            # get field strength for pair fi and fj
            r_ij = self.field_strengths[fi, fj]

            # get embeddings for the features of both the fields
            feat_embed_i = tf.squeeze(inputs[0:, fi:fi + 1, 0:], axis=1)
            feat_embed_j = tf.squeeze(inputs[0:, fj:fj + 1, 0:], axis=1)

            f = tf.scalar_mul(r_ij, batch_dot(feat_embed_i, feat_embed_j, axes=1))
            pairwise_inner_prods.append(f)

        sum_ = tf.add_n(pairwise_inner_prods)
        return sum_ 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:26,代碼來源:interaction.py

示例6: soft_arg_min

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def soft_arg_min(filtered_cost_volume, name):
    with tf.variable_scope(name):
        #input.shape (batch, depth, H, W)
        # softargmin to disp image, outsize of (B, H, W)

        #print('filtered_cost_volume:',filtered_cost_volume.shape)
        probability_volume = tf.nn.softmax(tf.scalar_mul(-1, filtered_cost_volume),
                                           dim=1, name='prob_volume')
        #print('probability_volume:',probability_volume.shape)
        volume_shape = tf.shape(probability_volume)
        soft_1d = tf.cast(tf.range(0, volume_shape[1], dtype=tf.int32),tf.float32)
        soft_4d = tf.tile(soft_1d, tf.stack([volume_shape[0] * volume_shape[2] * volume_shape[3]]))
        soft_4d = tf.reshape(soft_4d, [volume_shape[0], volume_shape[2], volume_shape[3], volume_shape[1]])
        soft_4d = tf.transpose(soft_4d, [0, 3, 1, 2])
        estimated_disp_image = tf.reduce_sum(soft_4d * probability_volume, axis=1)
        #print(estimated_disp_image.shape)
        #estimated_disp_image = tf.expand_dims(estimated_disp_image, axis=3)
        return estimated_disp_image 
開發者ID:zemofreedom,項目名稱:PSMNet-Tensorflow,代碼行數:20,代碼來源:utils.py

示例7: ddx

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def ddx(inpt, channel, dx, scope='ddx', name=None):
    inpt_shape = inpt.get_shape().as_list()
    var = tf.expand_dims( inpt[:,:,:,:,channel], axis=4 )

    with tf.variable_scope(scope):
        ddx1D = tf.constant([-1./60., 3./20., -3./4., 0., 3./4., -3./20., 1./60.], dtype=tf.float32)
        ddx3D = tf.reshape(ddx1D, shape=(-1,1,1,1,1))

    strides = [1,1,1,1,1]
    var_pad = periodic_padding( var, ((3,3),(0,0),(0,0)) )
    output = tf.nn.conv3d(var_pad, ddx3D, strides, padding = 'VALID',
                          data_format = 'NDHWC', name=name)
    output = tf.scalar_mul(1./dx, output)
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:17,代碼來源:ops.py

示例8: ddy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def ddy(inpt, channel, dy, scope='ddy', name=None):
    inpt_shape = inpt.get_shape().as_list()
    var = tf.expand_dims( inpt[:,:,:,:,channel], axis=4 )

    with tf.variable_scope(scope):
        ddy1D = tf.constant([-1./60., 3./20., -3./4., 0., 3./4., -3./20., 1./60.], dtype=tf.float32)
        ddy3D = tf.reshape(ddy1D, shape=(1,-1,1,1,1))

    strides = [1,1,1,1,1]
    var_pad = periodic_padding( var, ((0,0),(3,3),(0,0)) )
    output = tf.nn.conv3d(var_pad, ddy3D, strides, padding = 'VALID',
                          data_format = 'NDHWC', name=name)
    output = tf.scalar_mul(1./dy, output)
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:17,代碼來源:ops.py

示例9: ddz

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def ddz(inpt, channel, dz, scope='ddz', name=None):
    inpt_shape = inpt.get_shape().as_list()
    var = tf.expand_dims( inpt[:,:,:,:,channel], axis=4 )

    with tf.variable_scope(scope):
        ddz1D = tf.constant([-1./60., 3./20., -3./4., 0., 3./4., -3./20., 1./60.], dtype=tf.float32)
        ddz3D = tf.reshape(ddz1D, shape=(1,1,-1,1,1))

    strides = [1,1,1,1,1]
    var_pad = periodic_padding( var, ((0,0),(0,0),(3,3)) )
    output = tf.nn.conv3d(var_pad, ddz3D, strides, padding = 'VALID',
                          data_format = 'NDHWC', name=name)
    output = tf.scalar_mul(1./dz, output)
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:17,代碼來源:ops.py

示例10: d2dx2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def d2dx2(inpt, channel, dx, scope='d2dx2', name=None):
    inpt_shape = inpt.get_shape().as_list()
    var = tf.expand_dims( inpt[:,:,:,:,channel], axis=4 )

    with tf.variable_scope(scope):
        ddx1D = tf.constant([1./90., -3./20., 3./2., -49./18., 3./2., -3./20., 1./90.], dtype=tf.float32)
        ddx3D = tf.reshape(ddx1D, shape=(-1,1,1,1,1))

    strides = [1,1,1,1,1]
    var_pad = periodic_padding( var, ((3,3),(0,0),(0,0)) )
    output = tf.nn.conv3d(var_pad, ddx3D, strides, padding = 'VALID',
                          data_format = 'NDHWC', name=name)
    output = tf.scalar_mul(1./dx**2, output)
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:17,代碼來源:ops.py

示例11: d2dy2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def d2dy2(inpt, channel, dy, scope='d2dy2', name=None):
    inpt_shape = inpt.get_shape().as_list()
    var = tf.expand_dims( inpt[:,:,:,:,channel], axis=4 )

    with tf.variable_scope(scope):
        ddy1D = tf.constant([1./90., -3./20., 3./2., -49./18., 3./2., -3./20., 1./90.], dtype=tf.float32)
        ddy3D = tf.reshape(ddy1D, shape=(1,-1,1,1,1))

    strides = [1,1,1,1,1]
    var_pad = periodic_padding( var, ((0,0),(3,3),(0,0)) )
    output = tf.nn.conv3d(var_pad, ddy3D, strides, padding = 'VALID',
                          data_format = 'NDHWC', name=name)
    output = tf.scalar_mul(1./dy**2, output)
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:17,代碼來源:ops.py

示例12: preprocess_for_eval

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def preprocess_for_eval(image,
                        classes,
                        boxes,
                        resolution,
                        speed_mode=False):
  if speed_mode:
    pass
  else:

    # mean subtraction   
    means = [_R_MEAN, _G_MEAN, _B_MEAN]

    channels = tf.split(axis=2, num_or_size_splits=3, value=image)
    for i in range(3):
      channels[i] -= means[i]

    # image = tf.concat(axis=2, values=channels)

    # caffe swaps color channels
    image = tf.concat(axis=2, values=[channels[2], channels[1], channels[0]]) 


    image, scale, translation = bilinear_resize(image, resolution, depth=3, resize_mode="bilinear")
    # Need this to make later tensor unstack working
    image.set_shape([resolution, resolution, 3])
    x1, y1, x2, y2 = tf.unstack(boxes, 4, axis=1)
    x1 = tf.scalar_mul(scale[1], x1)
    y1 = tf.scalar_mul(scale[0], y1)
    x2 = tf.scalar_mul(scale[1], x2)
    y2 = tf.scalar_mul(scale[0], y2)
    boxes = tf.concat([tf.expand_dims(x1, -1),
                       tf.expand_dims(y1, -1),
                       tf.expand_dims(x2, -1),
                       tf.expand_dims(y2, -1)], axis=1)

    boxes = boxes + [translation[1], translation[0], translation[1], translation[0]]


  return image, classes, boxes, scale, translation 
開發者ID:lambdal,項目名稱:lambda-deep-learning-demo,代碼行數:41,代碼來源:ssd_augmenter.py

示例13: focal_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def focal_loss(self, pred, label, num_class=21, alpha=0.25, gamma=2.0):
        label_one_hot = tf.one_hot(indices=label, depth=num_class, on_value=1.0, off_value=0.0, axis=-1, dtype=tf.float32)
        pt = tf.reduce_sum(tf.multiply(pred, label_one_hot), axis=1)

        gamma_tf = tf.scalar_mul(gamma, tf.ones_like(pt, tf.float32))
        alpha_tf = tf.map_fn(lambda x: 1.0 - alpha if x == 0 else alpha, label, dtype=tf.float32)

        cls_loss = alpha_tf*(-1.0 * tf.pow(1 - pt, gamma_tf) * tf.log(pt))
        #cls_loss = -1.0 * tf.log(pt)
        #cls_loss = -1 * tf.multiply(alpha, tf.multiply(tf.pow(1 - pt, gamma), tf.log(pt)))
        return cls_loss 
開發者ID:xmyqsh,項目名稱:RetinaNet,代碼行數:13,代碼來源:network.py

示例14: focal_loss_sigmoid

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def focal_loss_sigmoid(self, pred, label, num_class=20, alpha=0.25, gamma=2.0):
        label_one_hot = tf.one_hot(indices=label - 1, depth=num_class, on_value=1.0, off_value=0.0, axis=-1, dtype=tf.float32)
        pt = tf.where(tf.equal(label_one_hot, 1.0), pred, 1.0 - pred)

        gamma_tf = tf.scalar_mul(gamma, tf.ones_like(pt, tf.float32))
        #alpha_tf = tf.map_fn(lambda x: 1.0 - alpha if x == 0 else alpha, label_one_hot, dtype=tf.float32)
        alpha_tf = tf.scalar_mul(alpha, tf.ones_like(pt, tf.float32))
        alpha_tf = tf.where(tf.equal(label_one_hot, 1.0), alpha_tf, 1.0 - alpha_tf)
        #alpha_tf = 1.0

        cls_loss = alpha_tf*(-1.0 * tf.pow(1 - pt, gamma_tf) * tf.log(pt))

        return cls_loss 
開發者ID:xmyqsh,項目名稱:RetinaNet,代碼行數:15,代碼來源:network.py

示例15: calculate_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import scalar_mul [as 別名]
def calculate_loss(self, predictions, labels, b=1.0, **unused_params):
    with tf.name_scope("loss_hinge"):
      float_labels = tf.cast(labels, tf.float32)
      all_zeros = tf.zeros(tf.shape(float_labels), dtype=tf.float32)
      all_ones = tf.ones(tf.shape(float_labels), dtype=tf.float32)
      sign_labels = tf.subtract(tf.scalar_mul(2, float_labels), all_ones)
      hinge_loss = tf.maximum(
          all_zeros, tf.scalar_mul(b, all_ones) - sign_labels * predictions)
      return tf.reduce_mean(tf.reduce_sum(hinge_loss, 1)) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:11,代碼來源:losses.py


注:本文中的tensorflow.scalar_mul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。