本文整理匯總了Python中tensorflow.saved_model方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.saved_model方法的具體用法?Python tensorflow.saved_model怎麽用?Python tensorflow.saved_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.saved_model方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pack
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def pack(
self, obj, signatures=None, options=None
): # pylint:disable=arguments-differ
"""
Args:
obj: Either a path(str/byte/os.PathLike) containing exported
`tf.saved_model` files, or a Trackable object mapping to the `obj`
parameter of `tf.saved_model.save`
signatures:
options:
"""
if _is_path_like(obj):
return _ExportedTensorflowSavedModelArtifactWrapper(self, obj)
return _TensorflowSavedModelArtifactWrapper(self, obj, signatures, options)
示例2: _save_model_with_obscurely_shaped_list_output
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_obscurely_shaped_list_output(export_dir):
"""Writes SavedModel with hard-to-predict output shapes."""
def broadcast_obscurely_to(input, shape):
"""Like tf.broadcast_to(), but hostile to static shape propagation."""
obscured_shape = tf.cast(tf.cast(shape, tf.float32)
# Add small random noise that gets rounded away.
+ 0.1*tf.sin(tf.random.uniform((), -3, +3)) + 0.3,
tf.int32)
return tf.broadcast_to(input, obscured_shape)
@tf.function(
input_signature=[tf.TensorSpec(shape=(None, 1), dtype=tf.float32)])
def call_fn(x):
# For each batch element x, the three outputs are
# value x with shape (1)
# value 2*x broadcast to shape (2,2)
# value 3*x broadcast to shape (3,3,3)
batch_size = tf.shape(x)[0]
return [broadcast_obscurely_to(tf.reshape(i*x, [batch_size] + [1]*i),
tf.concat([[batch_size], [i]*i], axis=0))
for i in range(1, 4)]
obj = tf.train.Checkpoint()
obj.__call__ = call_fn
tf.saved_model.save(obj, export_dir)
示例3: _load_vgg16
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _load_vgg16(self):
'''
Loads the pretrained, convolutionalized VGG-16 model into the session.
'''
# 1: Load the model
tf.saved_model.loader.load(sess=self.sess, tags=[self.vgg16_tag], export_dir=self.vgg16_dir)
# 2: Return the tensors of interest
graph = tf.get_default_graph()
vgg16_image_input_tensor_name = 'image_input:0'
vgg16_keep_prob_tensor_name = 'keep_prob:0'
vgg16_pool3_out_tensor_name = 'layer3_out:0'
vgg16_pool4_out_tensor_name = 'layer4_out:0'
vgg16_fc7_out_tensor_name = 'layer7_out:0'
image_input = graph.get_tensor_by_name(vgg16_image_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg16_keep_prob_tensor_name)
pool3_out = graph.get_tensor_by_name(vgg16_pool3_out_tensor_name)
pool4_out = graph.get_tensor_by_name(vgg16_pool4_out_tensor_name)
fc7_out = graph.get_tensor_by_name(vgg16_fc7_out_tensor_name)
return image_input, keep_prob, pool3_out, pool4_out, fc7_out
示例4: _load_tf_saved_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _load_tf_saved_model(path):
try:
import tensorflow as tf
from tensorflow.python.training.tracking.tracking import AutoTrackable
TF2 = tf.__version__.startswith('2')
except ImportError:
raise MissingDependencyException(
"Tensorflow package is required to use TfSavedModelArtifact"
)
if TF2:
return tf.saved_model.load(path)
else:
loaded = tf.compat.v2.saved_model.load(path)
if isinstance(loaded, AutoTrackable) and not hasattr(loaded, "__call__"):
logger.warning(
'''Importing SavedModels from TensorFlow 1.x.
`outputs = imported(inputs)` is not supported in bento service due to
tensorflow API.
Recommended usage:
```python
from tensorflow.python.saved_model import signature_constants
imported = tf.saved_model.load(path_to_v1_saved_model)
wrapped_function = imported.signatures[
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
wrapped_function(tf.ones([]))
```
See https://www.tensorflow.org/api_docs/python/tf/saved_model/load for
details.
'''
)
return loaded
示例5: save
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def save(self, dst):
try:
import tensorflow as tf
TF2 = tf.__version__.startswith('2')
except ImportError:
raise MissingDependencyException(
"Tensorflow package is required to use TfSavedModelArtifact."
)
if TF2:
return tf.saved_model.save(
self.obj,
self.spec._saved_model_path(dst),
signatures=self.signatures,
options=self.options,
)
else:
if self.options:
logger.warning(
"Parameter 'options: %s' is ignored when using Tensorflow "
"version 1",
str(self.options),
)
return tf.saved_model.save(
self.obj, self.spec._saved_model_path(dst), signatures=self.signatures
)
示例6: _skip_if_no_tf_asset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _skip_if_no_tf_asset(test_case):
if not hasattr(tf.saved_model, "Asset"):
test_case.skipTest(
"Your TensorFlow version (%s) looks too old for creating SavedModels "
" with assets." % tf.__version__)
示例7: _save_half_plus_one_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_half_plus_one_model(export_dir, save_from_keras=False):
"""Writes Hub-style SavedModel to compute y = wx + 1, with w trainable."""
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
times_w = tf.keras.layers.Dense(
units=1,
kernel_initializer=tf.keras.initializers.Constant([[0.5]]),
kernel_regularizer=tf.keras.regularizers.l2(0.01),
use_bias=False)
plus_1 = tf.keras.layers.Dense(
units=1,
kernel_initializer=tf.keras.initializers.Constant([[1.0]]),
bias_initializer=tf.keras.initializers.Constant([1.0]),
trainable=False)
outp = plus_1(times_w(inp))
model = tf.keras.Model(inp, outp)
if save_from_keras:
tf.saved_model.save(model, export_dir)
return
@tf.function(input_signature=[
tf.TensorSpec(shape=(None, 1), dtype=tf.float32)])
def call_fn(inputs):
return model(inputs, training=False)
obj = tf.train.Checkpoint()
obj.__call__ = call_fn
obj.variables = model.trainable_variables + model.non_trainable_variables
assert len(obj.variables) == 3, "Expect 2 kernels and 1 bias."
obj.trainable_variables = [times_w.kernel]
assert(len(model.losses) == 1), "Expect 1 regularization loss."
obj.regularization_losses = [
tf.function(lambda: model.losses[0], input_signature=[])]
tf.saved_model.save(obj, export_dir)
示例8: _save_batch_norm_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_batch_norm_model(export_dir, save_from_keras=False):
"""Writes a Hub-style SavedModel with a batch norm layer."""
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
bn = tf.keras.layers.BatchNormalization(momentum=0.8)
outp = bn(inp)
model = tf.keras.Model(inp, outp)
if save_from_keras:
tf.saved_model.save(model, export_dir)
return
@tf.function
def call_fn(inputs, training=False):
return model(inputs, training=training)
for training in (True, False):
call_fn.get_concrete_function(tf.TensorSpec((None, 1), tf.float32),
training=training)
obj = tf.train.Checkpoint()
obj.__call__ = call_fn
# Test assertions pick up variables by their position here.
obj.trainable_variables = [bn.beta, bn.gamma]
assert _tensors_names_set(obj.trainable_variables) == _tensors_names_set(
model.trainable_variables)
obj.variables = [bn.beta, bn.gamma, bn.moving_mean, bn.moving_variance]
assert _tensors_names_set(obj.variables) == _tensors_names_set(
model.trainable_variables + model.non_trainable_variables)
obj.regularization_losses = []
assert not model.losses
tf.saved_model.save(obj, export_dir)
示例9: _save_model_with_hparams
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_hparams(export_dir):
"""Writes a Hub-style SavedModel to compute y = ax + b with hparams a, b."""
@tf.function(input_signature=[
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.float32)])
def call_fn(x, a=1., b=0.):
return tf.add(tf.multiply(a, x), b)
obj = tf.train.Checkpoint()
obj.__call__ = call_fn
tf.saved_model.save(obj, export_dir)
示例10: _save_model_with_custom_attributes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_custom_attributes(export_dir, temp_dir,
save_from_keras=False):
"""Writes a Hub-style SavedModel with a custom attributes."""
# Calling the module parses an integer.
f = lambda a: tf.strings.to_number(a, tf.int64)
if save_from_keras:
inp = tf.keras.layers.Input(shape=(1,), dtype=tf.string)
outp = tf.keras.layers.Lambda(f)(inp)
model = tf.keras.Model(inp, outp)
else:
model = tf.train.Checkpoint()
model.__call__ = tf.function(
input_signature=[tf.TensorSpec(shape=(None, 1), dtype=tf.string)])(f)
# Running on the `sample_input` file yields the `sample_output` value.
asset_source_file_name = os.path.join(temp_dir, "number.txt")
tf.io.gfile.makedirs(temp_dir)
with tf.io.gfile.GFile(asset_source_file_name, "w") as f:
f.write("12345\n")
model.sample_input = tf.saved_model.Asset(asset_source_file_name)
model.sample_output = tf.Variable([[12345]], dtype=tf.int64)
# Save model and invalidate the original asset file name.
tf.saved_model.save(model, export_dir)
tf.io.gfile.remove(asset_source_file_name)
return export_dir
示例11: _save_plus_one_saved_model_v2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_plus_one_saved_model_v2(path, save_from_keras=False):
"""Writes Hub-style SavedModel that increments the input by one."""
if save_from_keras: raise NotImplementedError()
obj = tf.train.Checkpoint()
@tf.function(input_signature=[tf.TensorSpec(None, dtype=tf.float32)])
def plus_one(x):
return x + 1
obj.__call__ = plus_one
tf.saved_model.save(obj, path)