當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.saved_model方法代碼示例

本文整理匯總了Python中tensorflow.saved_model方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.saved_model方法的具體用法?Python tensorflow.saved_model怎麽用?Python tensorflow.saved_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.saved_model方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pack

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def pack(
        self, obj, signatures=None, options=None
    ):  # pylint:disable=arguments-differ
        """

        Args:
            obj: Either a path(str/byte/os.PathLike) containing exported
                `tf.saved_model` files, or a Trackable object mapping to the `obj`
                parameter of `tf.saved_model.save`
            signatures:
            options:
        """

        if _is_path_like(obj):
            return _ExportedTensorflowSavedModelArtifactWrapper(self, obj)

        return _TensorflowSavedModelArtifactWrapper(self, obj, signatures, options) 
開發者ID:bentoml,項目名稱:BentoML,代碼行數:19,代碼來源:tf_savedmodel_artifact.py

示例2: _save_model_with_obscurely_shaped_list_output

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_obscurely_shaped_list_output(export_dir):
  """Writes SavedModel with hard-to-predict output shapes."""
  def broadcast_obscurely_to(input, shape):
    """Like tf.broadcast_to(), but hostile to static shape propagation."""
    obscured_shape = tf.cast(tf.cast(shape, tf.float32)
                             # Add small random noise that gets rounded away.
                             + 0.1*tf.sin(tf.random.uniform((), -3, +3)) + 0.3,
                             tf.int32)
    return tf.broadcast_to(input, obscured_shape)

  @tf.function(
      input_signature=[tf.TensorSpec(shape=(None, 1), dtype=tf.float32)])
  def call_fn(x):
    # For each batch element x, the three outputs are
    #   value x with shape (1)
    #   value 2*x broadcast to shape (2,2)
    #   value 3*x broadcast to shape (3,3,3)
    batch_size = tf.shape(x)[0]
    return [broadcast_obscurely_to(tf.reshape(i*x, [batch_size] + [1]*i),
                                   tf.concat([[batch_size], [i]*i], axis=0))
            for i in range(1, 4)]

  obj = tf.train.Checkpoint()
  obj.__call__ = call_fn
  tf.saved_model.save(obj, export_dir) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:27,代碼來源:keras_layer_test.py

示例3: _load_vgg16

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _load_vgg16(self):
        '''
        Loads the pretrained, convolutionalized VGG-16 model into the session.
        '''

        # 1: Load the model

        tf.saved_model.loader.load(sess=self.sess, tags=[self.vgg16_tag], export_dir=self.vgg16_dir)

        # 2: Return the tensors of interest

        graph = tf.get_default_graph()

        vgg16_image_input_tensor_name = 'image_input:0'
        vgg16_keep_prob_tensor_name = 'keep_prob:0'
        vgg16_pool3_out_tensor_name = 'layer3_out:0'
        vgg16_pool4_out_tensor_name = 'layer4_out:0'
        vgg16_fc7_out_tensor_name = 'layer7_out:0'

        image_input = graph.get_tensor_by_name(vgg16_image_input_tensor_name)
        keep_prob = graph.get_tensor_by_name(vgg16_keep_prob_tensor_name)
        pool3_out = graph.get_tensor_by_name(vgg16_pool3_out_tensor_name)
        pool4_out = graph.get_tensor_by_name(vgg16_pool4_out_tensor_name)
        fc7_out = graph.get_tensor_by_name(vgg16_fc7_out_tensor_name)

        return image_input, keep_prob, pool3_out, pool4_out, fc7_out 
開發者ID:pierluigiferrari,項目名稱:fcn8s_tensorflow,代碼行數:28,代碼來源:fcn8s_tensorflow.py

示例4: _load_tf_saved_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _load_tf_saved_model(path):
    try:
        import tensorflow as tf
        from tensorflow.python.training.tracking.tracking import AutoTrackable

        TF2 = tf.__version__.startswith('2')
    except ImportError:
        raise MissingDependencyException(
            "Tensorflow package is required to use TfSavedModelArtifact"
        )

    if TF2:
        return tf.saved_model.load(path)
    else:
        loaded = tf.compat.v2.saved_model.load(path)
        if isinstance(loaded, AutoTrackable) and not hasattr(loaded, "__call__"):
            logger.warning(
                '''Importing SavedModels from TensorFlow 1.x.
                `outputs = imported(inputs)` is not supported in bento service due to
                tensorflow API.

                Recommended usage:

                ```python
                from tensorflow.python.saved_model import signature_constants

                imported = tf.saved_model.load(path_to_v1_saved_model)
                wrapped_function = imported.signatures[
                    signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
                wrapped_function(tf.ones([]))
                ```

                See https://www.tensorflow.org/api_docs/python/tf/saved_model/load for
                details.
                '''
            )
        return loaded 
開發者ID:bentoml,項目名稱:BentoML,代碼行數:39,代碼來源:tf_savedmodel_artifact.py

示例5: save

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def save(self, dst):
        try:
            import tensorflow as tf

            TF2 = tf.__version__.startswith('2')
        except ImportError:
            raise MissingDependencyException(
                "Tensorflow package is required to use TfSavedModelArtifact."
            )

        if TF2:
            return tf.saved_model.save(
                self.obj,
                self.spec._saved_model_path(dst),
                signatures=self.signatures,
                options=self.options,
            )
        else:
            if self.options:
                logger.warning(
                    "Parameter 'options: %s' is ignored when using Tensorflow "
                    "version 1",
                    str(self.options),
                )

            return tf.saved_model.save(
                self.obj, self.spec._saved_model_path(dst), signatures=self.signatures
            ) 
開發者ID:bentoml,項目名稱:BentoML,代碼行數:30,代碼來源:tf_savedmodel_artifact.py

示例6: _skip_if_no_tf_asset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _skip_if_no_tf_asset(test_case):
  if not hasattr(tf.saved_model, "Asset"):
    test_case.skipTest(
        "Your TensorFlow version (%s) looks too old for creating SavedModels "
        " with assets." % tf.__version__) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:7,代碼來源:keras_layer_test.py

示例7: _save_half_plus_one_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_half_plus_one_model(export_dir, save_from_keras=False):
  """Writes Hub-style SavedModel to compute y = wx + 1, with w trainable."""
  inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
  times_w = tf.keras.layers.Dense(
      units=1,
      kernel_initializer=tf.keras.initializers.Constant([[0.5]]),
      kernel_regularizer=tf.keras.regularizers.l2(0.01),
      use_bias=False)
  plus_1 = tf.keras.layers.Dense(
      units=1,
      kernel_initializer=tf.keras.initializers.Constant([[1.0]]),
      bias_initializer=tf.keras.initializers.Constant([1.0]),
      trainable=False)
  outp = plus_1(times_w(inp))
  model = tf.keras.Model(inp, outp)

  if save_from_keras:
    tf.saved_model.save(model, export_dir)
    return

  @tf.function(input_signature=[
      tf.TensorSpec(shape=(None, 1), dtype=tf.float32)])
  def call_fn(inputs):
    return model(inputs, training=False)

  obj = tf.train.Checkpoint()
  obj.__call__ = call_fn
  obj.variables = model.trainable_variables + model.non_trainable_variables
  assert len(obj.variables) == 3, "Expect 2 kernels and 1 bias."
  obj.trainable_variables = [times_w.kernel]
  assert(len(model.losses) == 1), "Expect 1 regularization loss."
  obj.regularization_losses = [
      tf.function(lambda: model.losses[0], input_signature=[])]
  tf.saved_model.save(obj, export_dir) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:36,代碼來源:keras_layer_test.py

示例8: _save_batch_norm_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_batch_norm_model(export_dir, save_from_keras=False):
  """Writes a Hub-style SavedModel with a batch norm layer."""
  inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
  bn = tf.keras.layers.BatchNormalization(momentum=0.8)
  outp = bn(inp)
  model = tf.keras.Model(inp, outp)

  if save_from_keras:
    tf.saved_model.save(model, export_dir)
    return

  @tf.function
  def call_fn(inputs, training=False):
    return model(inputs, training=training)
  for training in (True, False):
    call_fn.get_concrete_function(tf.TensorSpec((None, 1), tf.float32),
                                  training=training)

  obj = tf.train.Checkpoint()
  obj.__call__ = call_fn
  # Test assertions pick up variables by their position here.
  obj.trainable_variables = [bn.beta, bn.gamma]
  assert _tensors_names_set(obj.trainable_variables) == _tensors_names_set(
      model.trainable_variables)
  obj.variables = [bn.beta, bn.gamma, bn.moving_mean, bn.moving_variance]
  assert _tensors_names_set(obj.variables) == _tensors_names_set(
      model.trainable_variables + model.non_trainable_variables)
  obj.regularization_losses = []
  assert not model.losses
  tf.saved_model.save(obj, export_dir) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:32,代碼來源:keras_layer_test.py

示例9: _save_model_with_hparams

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_hparams(export_dir):
  """Writes a Hub-style SavedModel to compute y = ax + b with hparams a, b."""
  @tf.function(input_signature=[
      tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
      tf.TensorSpec(shape=(), dtype=tf.float32),
      tf.TensorSpec(shape=(), dtype=tf.float32)])
  def call_fn(x, a=1., b=0.):
    return tf.add(tf.multiply(a, x), b)

  obj = tf.train.Checkpoint()
  obj.__call__ = call_fn
  tf.saved_model.save(obj, export_dir) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:14,代碼來源:keras_layer_test.py

示例10: _save_model_with_custom_attributes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_model_with_custom_attributes(export_dir, temp_dir,
                                       save_from_keras=False):
  """Writes a Hub-style SavedModel with a custom attributes."""
  # Calling the module parses an integer.
  f = lambda a: tf.strings.to_number(a, tf.int64)
  if save_from_keras:
    inp = tf.keras.layers.Input(shape=(1,), dtype=tf.string)
    outp = tf.keras.layers.Lambda(f)(inp)
    model = tf.keras.Model(inp, outp)
  else:
    model = tf.train.Checkpoint()
    model.__call__ = tf.function(
        input_signature=[tf.TensorSpec(shape=(None, 1), dtype=tf.string)])(f)

  # Running on the `sample_input` file yields the `sample_output` value.
  asset_source_file_name = os.path.join(temp_dir, "number.txt")
  tf.io.gfile.makedirs(temp_dir)
  with tf.io.gfile.GFile(asset_source_file_name, "w") as f:
    f.write("12345\n")
  model.sample_input = tf.saved_model.Asset(asset_source_file_name)
  model.sample_output = tf.Variable([[12345]], dtype=tf.int64)

  # Save model and invalidate the original asset file name.
  tf.saved_model.save(model, export_dir)
  tf.io.gfile.remove(asset_source_file_name)
  return export_dir 
開發者ID:tensorflow,項目名稱:hub,代碼行數:28,代碼來源:keras_layer_test.py

示例11: _save_plus_one_saved_model_v2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import saved_model [as 別名]
def _save_plus_one_saved_model_v2(path, save_from_keras=False):
  """Writes Hub-style SavedModel that increments the input by one."""
  if save_from_keras: raise NotImplementedError()

  obj = tf.train.Checkpoint()

  @tf.function(input_signature=[tf.TensorSpec(None, dtype=tf.float32)])
  def plus_one(x):
    return x + 1

  obj.__call__ = plus_one
  tf.saved_model.save(obj, path) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:14,代碼來源:keras_layer_test.py


注:本文中的tensorflow.saved_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。