本文整理匯總了Python中tensorflow.reverse_sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reverse_sequence方法的具體用法?Python tensorflow.reverse_sequence怎麽用?Python tensorflow.reverse_sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.reverse_sequence方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: lstm_seq2seq_internal_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def lstm_seq2seq_internal_attention(inputs, targets, hparams, train):
"""LSTM seq2seq model with attention, main step used for training."""
with tf.variable_scope("lstm_seq2seq_attention"):
# This is a temporary fix for varying-length sequences within in a batch.
# A more complete fix should pass a length tensor from outside so that
# all the lstm variants can use it.
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
encoder_outputs, final_encoder_state = lstm(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams, train, "decoder",
final_encoder_state, encoder_outputs, inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2)
示例2: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [tf.transpose(inputs, [1, 0, 2])]
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = gru_fw(
outputs[-1] * mask_fw, initial_state=(init_fw, ))
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(inputs_bw, initial_state=(init_bw, ))
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
示例3: lstm_seq2seq_internal_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def lstm_seq2seq_internal_attention(inputs, targets, hparams, train,
inputs_length, targets_length):
"""LSTM seq2seq model with attention, main step used for training."""
with tf.variable_scope("lstm_seq2seq_attention"):
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
encoder_outputs, final_encoder_state = lstm(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = targets_length + 1
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams, train, "decoder",
final_encoder_state, encoder_outputs, inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2)
示例4: bw_dynamic_rnn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def bw_dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
dtype=None, parallel_iterations=None, swap_memory=False,
time_major=False, scope=None):
assert not time_major # TODO : to be implemented later!
flat_inputs = flatten(inputs, 2) # [-1, J, d]
flat_len = None if sequence_length is None else tf.cast(flatten(sequence_length, 0), 'int64')
flat_inputs = tf.reverse(flat_inputs, [1]) if sequence_length is None \
else tf.reverse_sequence(flat_inputs, sequence_length, 1)
flat_outputs, final_state = tf.nn.dynamic_rnn(cell, flat_inputs, sequence_length=flat_len,
initial_state=initial_state, dtype=dtype,
parallel_iterations=parallel_iterations, swap_memory=swap_memory,
time_major=time_major, scope=scope)
flat_outputs = tf.reverse(flat_outputs, [1]) if sequence_length is None \
else tf.reverse_sequence(flat_outputs, sequence_length, 1)
outputs = reconstruct(flat_outputs, inputs, 2)
return outputs, final_state
示例5: bw_dynamic_rnn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def bw_dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
dtype=None, parallel_iterations=None, swap_memory=False,
time_major=False, scope=None):
assert not time_major # TODO : to be implemented later!
flat_inputs = flatten(inputs, 2) # [-1, J, d]
flat_len = None if sequence_length is None else tf.cast(flatten(sequence_length, 0), 'int64')
flat_inputs = tf.reverse(flat_inputs, 1) if sequence_length is None \
else tf.reverse_sequence(flat_inputs, sequence_length, 1)
flat_outputs, final_state = tf.nn.dynamic_rnn(cell, flat_inputs, sequence_length=flat_len,
initial_state=initial_state, dtype=dtype,
parallel_iterations=parallel_iterations, swap_memory=swap_memory,
time_major=time_major, scope=scope)
flat_outputs = tf.reverse(flat_outputs, 1) if sequence_length is None \
else tf.reverse_sequence(flat_outputs, sequence_length, 1)
outputs = reconstruct(flat_outputs, inputs, 2)
return outputs, final_state
示例6: BiRNN
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def BiRNN(layer, recur_size, seq_lengths, recur_cell=LSTM, bilin=False, **kwargs):
""""""
locations = tf.expand_dims(tf.one_hot(seq_lengths-1, tf.shape(layer)[1]), -1)
with tf.variable_scope('RNN_FW'):
fw_hidden, fw_cell = recur_cell(layer, recur_size, seq_lengths, **kwargs)
rev_layer = tf.reverse_sequence(layer, seq_lengths, batch_axis=0, seq_axis=1)
with tf.variable_scope('RNN_BW'):
bw_hidden, bw_cell = recur_cell(rev_layer, recur_size, seq_lengths, **kwargs)
rev_bw_hidden = tf.reverse_sequence(bw_hidden, seq_lengths, batch_axis=0, seq_axis=1)
rev_bw_cell = tf.reverse_sequence(bw_cell, seq_lengths, batch_axis=0, seq_axis=1)
if bilin:
layer = tf.concat([fw_hidden*rev_bw_hidden, fw_hidden, rev_bw_hidden], 2)
else:
layer = tf.concat([fw_hidden, rev_bw_hidden], 2)
if recur_cell == RNN:
final_states = tf.squeeze(tf.matmul(hidden, locations, transpose_a=True), -1)
else:
final_fw_hidden = tf.squeeze(tf.matmul(fw_hidden, locations, transpose_a=True), -1)
final_fw_cell = tf.squeeze(tf.matmul(fw_cell, locations, transpose_a=True), -1)
final_rev_bw_hidden = tf.squeeze(tf.matmul(rev_bw_hidden, locations, transpose_a=True), -1)
final_rev_bw_cell = tf.squeeze(tf.matmul(rev_bw_cell, locations, transpose_a=True), -1)
final_states = tf.concat([final_fw_hidden, final_rev_bw_hidden, final_fw_cell, final_rev_bw_cell], 1)
return layer, final_states
示例7: transform
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def transform(self, z_fwd, z_rvs, mask_fwd, mask_rvs, sequence_lengths):
h_fwd = []
h = z_fwd
for layer in self.rnn.layers:
h = layer(h, mask=mask_fwd)
h = self.dropout(h)
h_fwd.append(h)
h_rvs = []
h = z_rvs
for layer in self.rnn.layers:
h = layer(h, mask=mask_rvs)
h = self.dropout(h)
h_rvs.append(
tf.reverse_sequence(h, sequence_lengths - 1, seq_axis=1))
return h_fwd, h_rvs
示例8: embed_and_split
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def embed_and_split(self, x, sequence_lengths, pad=False):
if pad:
# Add one to each sequence element
if not self._use_pfam_alphabet:
x = x + 1
mask = rk.utils.convert_sequence_length_to_sequence_mask(x, sequence_lengths)
x = x * tf.cast(mask, x.dtype)
x = tf.pad(x, [[0, 0], [1, 1]]) # pad x
sequence_lengths += 2
mask = rk.utils.convert_sequence_length_to_sequence_mask(x, sequence_lengths)
z = self.embed(x)
z_fwd = z[:, :-1]
mask_fwd = mask[:, :-1]
z_rvs = tf.reverse_sequence(z, sequence_lengths, seq_axis=1)[:, :-1]
mask_rvs = tf.reverse_sequence(mask, sequence_lengths, seq_axis=1)[:, :-1]
return z_fwd, z_rvs, mask_fwd, mask_rvs, sequence_lengths
示例9: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def call(self, inputs):
sequence = inputs['primary']
protein_length = inputs['protein_length']
sequence = self.embedding(sequence)
tf.add_to_collection('checkpoints', sequence)
forward_output = self.forward_lstm(sequence)
tf.add_to_collection('checkpoints', forward_output)
reversed_sequence = tf.reverse_sequence(sequence, protein_length, seq_axis=1)
reverse_output = self.reverse_lstm(reversed_sequence)
reverse_output = tf.reverse_sequence(reverse_output, protein_length, seq_axis=1)
tf.add_to_collection('checkpoints', reverse_output)
encoder_output = tf.concat((forward_output, reverse_output), -1)
encoder_output = self.dropout(encoder_output)
inputs['encoder_output'] = encoder_output
return inputs
示例10: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
# cudnn GRU需要交換張量的維度,可能是便於計算
outputs = [tf.transpose(inputs, [1, 0, 2])]
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = gru_fw(
outputs[-1] * mask_fw, initial_state=(init_fw, ))
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(inputs_bw, initial_state=(init_bw, ))
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
示例11: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
# cudnn GRU需要交換張量的維度,可能是便於計算
outputs = [tf.transpose(inputs, [1, 0, 2])]
with tf.variable_scope(self.scope):
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = gru_fw(
outputs[-1] * mask_fw, initial_state=(init_fw, ))
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(
inputs_bw, initial_state=(init_bw, ))
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
示例12: bw_dynamic_rnn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def bw_dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
dtype=None, parallel_iterations=None, swap_memory=False,
time_major=False, scope=None):
assert not time_major # TODO : to be implemented later!
flat_inputs = flatten(inputs, 2) # [-1, J, d]
flat_len = None if sequence_length is None else tf.cast(flatten(sequence_length, 0), 'int64')
flat_inputs = tf.reverse(flat_inputs, 1) if sequence_length is None \
else tf.reverse_sequence(flat_inputs, sequence_length, 1)
flat_outputs, final_state = _dynamic_rnn(cell, flat_inputs, sequence_length=flat_len,
initial_state=initial_state, dtype=dtype,
parallel_iterations=parallel_iterations, swap_memory=swap_memory,
time_major=time_major, scope=scope)
flat_outputs = tf.reverse(flat_outputs, 1) if sequence_length is None \
else tf.reverse_sequence(flat_outputs, sequence_length, 1)
outputs = reconstruct(flat_outputs, inputs, 2)
return outputs, final_state
示例13: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [tf.transpose(inputs, [1, 0, 2])]
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
param_fw, param_bw = self.params[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw"):
out_fw, _ = gru_fw(outputs[-1] * mask_fw, init_fw, param_fw)
with tf.variable_scope("bw"):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(inputs_bw, init_bw, param_bw)
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
###### self attention part code
示例14: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [tf.transpose(inputs, [1, 0, 2])]
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
param_fw, param_bw = self.params[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw"):
out_fw, _ = gru_fw(outputs[-1] * mask_fw, init_fw, param_fw)
with tf.variable_scope("bw"):
inputs_bw = tf.reverse_sequence(outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
out_bw, _ = gru_bw(inputs_bw, init_bw, param_bw)
out_bw = tf.reverse_sequence(out_bw, seq_lengths=seq_len, seq_dim=0, batch_dim=1)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
res = tf.transpose(res, [1, 0, 2])
return res
示例15: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse_sequence [as 別名]
def __call__(self, inputs, seq_len, keep_prob=1.0, is_train=None, concat_layers=True):
outputs = [inputs]
with tf.variable_scope(self.scope):
for layer in range(self.num_layers):
gru_fw, gru_bw = self.grus[layer]
init_fw, init_bw = self.inits[layer]
mask_fw, mask_bw = self.dropout_mask[layer]
with tf.variable_scope("fw_{}".format(layer)):
out_fw, _ = tf.nn.dynamic_rnn(
gru_fw, outputs[-1] * mask_fw, seq_len,
initial_state=init_fw,
dtype=tf.float32)
with tf.variable_scope("bw_{}".format(layer)):
inputs_bw = tf.reverse_sequence(
outputs[-1] * mask_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0)
out_bw, _ = tf.nn.dynamic_rnn(
gru_bw, inputs_bw, seq_len, initial_state=init_bw, dtype=tf.float32)
out_bw = tf.reverse_sequence(
out_bw, seq_lengths=seq_len, seq_dim=1, batch_dim=0)
outputs.append(tf.concat([out_fw, out_bw], axis=2))
if concat_layers:
res = tf.concat(outputs[1:], axis=2)
else:
res = outputs[-1]
return res