當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reverse方法代碼示例

本文整理匯總了Python中tensorflow.reverse方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reverse方法的具體用法?Python tensorflow.reverse怎麽用?Python tensorflow.reverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reverse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calculate_generalized_advantage_estimator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  """Generalized advantage estimator."""

  # Below is slight weirdness, we set the last reward to 0.
  # This makes the advantage to be 0 in the last timestep
  reward = tf.concat([reward[:-1, :], value[-1:, :]], axis=0)
  next_value = tf.concat([value[1:, :], tf.zeros_like(value[-1:, :])], axis=0)
  next_not_done = 1 - tf.cast(tf.concat([done[1:, :],
                                         tf.zeros_like(done[-1:, :])], axis=0),
                              tf.float32)
  delta = reward + gae_gamma * next_value * next_not_done - value

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:ppo.py

示例2: VGG

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def VGG(x,para):
    x = tf.reverse(x, [-1]) - np.array([103.939, 116.779, 123.68])
    conv1_1 = conv_layer_relu(x, para['conv1_1'][0], para['conv1_1'][1])
    conv1_2 = conv_layer_relu(conv1_1, para['conv1_2'][0], para['conv1_2'][1])
    conv1_2_ave = ave_pool(conv1_2)

    conv2_1 = conv_layer_relu(conv1_2_ave, para['conv2_1'][0], para['conv2_1'][1])
    conv2_2 = conv_layer_relu(conv2_1, para['conv2_2'][0], para['conv2_2'][1])
    conv2_2_ave = ave_pool(conv2_2)

    conv3_1 = conv_layer_relu(conv2_2_ave, para['conv3_1'][0], para['conv3_1'][1])
    conv3_2 = conv_layer_relu(conv3_1, para['conv3_2'][0], para['conv3_2'][1])
    conv3_3 = conv_layer_relu(conv3_2, para['conv3_3'][0], para['conv3_3'][1])
    conv3_3_ave = ave_pool(conv3_3)

    conv4_1 = conv_layer_relu(conv3_3_ave, para['conv4_1'][0], para['conv4_1'][1])
    conv4_2 = conv_layer_relu(conv4_1, para['conv4_2'][0], para['conv4_2'][1])
    conv4_3 = conv_layer_relu(conv4_2, para['conv4_3'][0], para['conv4_3'][1])
    f = {}
    f["conv1_2"] = conv1_2
    f["conv2_2"] = conv2_2
    f["conv3_3"] = conv3_3
    f["conv4_3"] = conv4_3
    return f 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:26,代碼來源:stylize.py

示例3: _discount_reward_tensor_1d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def _discount_reward_tensor_1d(reward, sequence_length,
                               discount=1., dtype=None):
    if sequence_length is None:
        raise ValueError('sequence_length must not be `None` for 1D reward.')

    batch_size = tf.shape(reward)[0]
    max_seq_length = tf.reduce_max(sequence_length)
    dtype = dtype or reward.dtype

    if discount == 1.:
        dmat = tf.ones(
            tf.concat([[batch_size], [max_seq_length]], 0), dtype=dtype)
    else:
        mask = tf.sequence_mask(sequence_length, dtype=dtype)
        mask = tf.concat([mask[:, 1:], tf.zeros_like(mask[:, -1:])], axis=1)
        # Make each row = [discount, ..., discount, 1, ..., 1]
        dmat = mask * discount + (1 - mask)
        dmat = tf.cumprod(dmat, axis=1, reverse=True)

    disc_reward = dmat * tf.expand_dims(reward, -1)
    disc_reward = mask_sequences(
        disc_reward, sequence_length, dtype=dtype, tensor_rank=2)

    return disc_reward 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:26,代碼來源:rewards.py

示例4: _discount_reward_tensor_2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def _discount_reward_tensor_2d(reward, sequence_length=None,
                               discount=1., dtype=None):
    if sequence_length is not None:
        reward = mask_sequences(
            reward, sequence_length, dtype=dtype, tensor_rank=2)

    if discount == 1.:
        disc_reward = tf.cumsum(reward, axis=1, reverse=True)
    else:
        # [max_time, batch_size]
        rev_reward_T = tf.transpose(tf.reverse(reward, [1]), [1, 0])
        rev_reward_T_cum = tf.scan(
            fn=lambda acc, cur: cur + discount * acc,
            elems=rev_reward_T,
            initializer=tf.zeros_like(reward[:, 1]),
            back_prop=False)
        disc_reward = tf.reverse(
            tf.transpose(rev_reward_T_cum, [1, 0]), [1])

    return disc_reward 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:22,代碼來源:rewards.py

示例5: _compute_rnn_outputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def _compute_rnn_outputs(self):

        reversed_inputs = tf.reverse(self.inputs, [False, True, False])
        reversed_resets = tf.reverse(self.resets, [False, True, False])
        with tf.variable_scope('fw'):
            self._fw_lstm = LSTM(self.inputs, self.resets, self.training,
                                 self.num_layers, self.hidden_layer_size,
                                 self.init_scale, self.dropout_keep_prob)
        with tf.variable_scope('rv'):
            self._rv_lstm = LSTM(reversed_inputs, reversed_resets,
                                 self.training, self.num_layers,
                                 self.hidden_layer_size, self.init_scale,
                                 self.dropout_keep_prob)

        fw_outputs = self._fw_lstm.outputs
        rv_outputs = tf.reverse(self._rv_lstm.outputs, [False, True, False])
        outputs = tf.concat(2, [fw_outputs, rv_outputs])
        return outputs 
開發者ID:rdipietro,項目名稱:miccai-2016-surgical-activity-rec,代碼行數:20,代碼來源:models.py

示例6: reflection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def reflection(data, decision):
  """Conditionally reflects the data in XYZ.

  Args:
    data: input tensor, shape: [..], z, y, x, c
    decision: boolean tensor, shape 3, indicating on which spatial dimensions
       to apply the reflection (x, y, z)

  Returns:
    TF op to conditionally apply reflection.
  """
  with tf.name_scope('augment_reflection'):
    rank = data.get_shape().ndims
    spatial_dims = tf.constant([rank - 2, rank - 3, rank - 4])
    selected_dims = tf.boolean_mask(spatial_dims, decision)
    return tf.reverse(data, selected_dims) 
開發者ID:google,項目名稱:ffn,代碼行數:18,代碼來源:augmentation.py

示例7: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def __call__(self, x):
    """Applies the sampled permutation and reflection to `x`.

    Args:
      x: A Tensor of rank `self.rank`.

    Returns:
      The transformed Tensor, retaining as much static shape information as
      possible.
    """
    x = tf.convert_to_tensor(x)
    with tf.name_scope('permute_and_reflect'):
      if self.permutable_axes.size > 0:
        x = permute_axes(x, self.full_permutation, self.permutable_axes)
      if self.reflectable_axes.size > 0:
        x = tf.reverse(x, self.reflected_axes)
      return x 
開發者ID:google,項目名稱:ffn,代碼行數:19,代碼來源:augmentation.py

示例8: augment_stochastic

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def augment_stochastic(data_ops, augment_rc=False, augment_shifts=[]):
  """Apply stochastic augmentations,

  Args:
    data_ops: dict with keys 'sequence,' 'label,' and 'na.'
    augment_rc: Boolean for whether to apply reverse complement augmentation.
    augment_shifts: list of int offsets to sample shift augmentations.
  Returns:
    data_ops_aug: augmented data
  """
  if augment_shifts:
    data_ops['sequence'] = augment_stochastic_shifts(data_ops['sequence'],
                                                     augment_shifts)

  if augment_rc:
    data_ops = augment_stochastic_rc(data_ops)
  else:
    data_ops['reverse_preds'] = tf.zeros((), dtype=tf.bool)

  return data_ops 
開發者ID:calico,項目名稱:basenji,代碼行數:22,代碼來源:augmentation.py

示例9: reverse_complement

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def reverse_complement(input_seq, lengths=None):
  # TODO(dbelanger) remove dependencies on this method,
  # as it is easy to mis-use in ways that lead to buggy results.
  """Reverse complement a list of one hot coded nucleotide Tensors.
    Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, 4)
    lengths:   A `Tensor` of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverse
               complements the list.
    Returns:
    reverse complemented sequence
    """
  if lengths is not None:
    print("Not yet implemented", file=sys.stderr)
    exit(1)
  else:
    nt_rc = tf.constant(
        [[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]],
        dtype="float32")
    return [tf.matmul(ris, nt_rc) for ris in reversed(input_seq)] 
開發者ID:calico,項目名稱:basenji,代碼行數:22,代碼來源:ops.py

示例10: fix_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def fix_variables(self, sess, pretrained_model):
        print('Fix VGG16 layers..')
        with tf.variable_scope('Fix_VGG16') as scope:
            with tf.device("/cpu:0"):
                # fix the vgg16 issue from conv weights to fc weights
                # fix RGB to BGR
                fc6_conv = tf.get_variable("fc6_conv", [7, 7, 512, 4096], trainable=False)
                fc7_conv = tf.get_variable("fc7_conv", [1, 1, 4096, 4096], trainable=False)
                conv1_rgb = tf.get_variable("conv1_rgb", [3, 3, 3, 64], trainable=False)
                restorer_fc = tf.train.Saver({self._scope + "/fc6/weights": fc6_conv,
                                              self._scope + "/fc7/weights": fc7_conv,
                                              self._scope + "/conv1/conv1_1/weights": conv1_rgb})
                restorer_fc.restore(sess, pretrained_model)
                # print("_variables_to_fix:", self._variables_to_fix)

                # sess.run(tf.assign(self._variables_to_fix[self._scope + '/fc6/weights:0'], tf.reshape(fc6_conv,
                #                                                                                       self._variables_to_fix[
                #                                                                                           self._scope + '/fc6/weights:0'].get_shape())))
                # sess.run(tf.assign(self._variables_to_fix[self._scope + '/fc7/weights:0'], tf.reshape(fc7_conv,
                #                                                                                       self._variables_to_fix[
                #                                                                                           self._scope + '/fc7/weights:0'].get_shape())))
                sess.run(tf.assign(self._variables_to_fix[self._scope + '/conv1/conv1_1/weights:0'],
                                   tf.reverse(conv1_rgb, [2]))) 
開發者ID:wanjinchang,項目名稱:SSH-TensorFlow,代碼行數:25,代碼來源:vgg16.py

示例11: LandmarkImageLayer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def LandmarkImageLayer(Landmarks):
    
    def draw_landmarks(L):
        def draw_landmarks_helper(Point):
            intLandmark = tf.to_int32(Point)
            locations = Offsets + intLandmark
            dxdy = Point - tf.to_float(intLandmark)
            offsetsSubPix = tf.to_float(Offsets) - dxdy
            vals = 1 / (1 + tf.norm(offsetsSubPix, axis=2))
            img = tf.scatter_nd(locations, vals, shape=(IMGSIZE, IMGSIZE))
            return img
        Landmark = tf.reverse(tf.reshape(L, [-1,2]), [-1])
        # Landmark = tf.reshape(L, (-1, 2))
        Landmark = tf.clip_by_value(Landmark, HalfSize, IMGSIZE - 1 - HalfSize)
        # Ret = 1 / (tf.norm(tf.map_fn(DoIn,Landmarks),axis = 3) + 1)
        Ret = tf.map_fn(draw_landmarks_helper, Landmark)
        Ret = tf.reshape(tf.reduce_max(Ret, axis=0), [IMGSIZE, IMGSIZE, 1])
        return Ret
    return tf.map_fn(draw_landmarks, Landmarks) 
開發者ID:junhwanjang,項目名稱:face_landmark_dnn,代碼行數:21,代碼來源:layers.py

示例12: _common

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def _common(cls, node, **kwargs):
    axis = node.attrs.get("axis", 0)
    keepdims = node.attrs.get("keepdims", 1)
    select_last_index = node.attrs.get("select_last_index", 0)
    if select_last_index == 0:
      arg_min = cls.make_tensor_from_onnx_node(node, **kwargs)
    else:
      # reverse the input and apply argmax on that to get last occurrence of max
      x = kwargs["tensor_dict"][node.inputs[0]]
      x = tf.reverse(x, axis=[axis])
      arg_min = cls.make_tensor_from_onnx_node(node, inputs=[x], **kwargs)
      # adjust indices to account for the reverse
      arg_min = tf_shape(x)[axis] - arg_min - 1
    if keepdims == 1:
      return [tf.expand_dims(arg_min, axis=axis)]
    return [arg_min] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:18,代碼來源:arg_min.py

示例13: _common

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def _common(cls, node, **kwargs):
    axis = node.attrs.get("axis", 0)
    keepdims = node.attrs.get("keepdims", 1)
    select_last_index = node.attrs.get("select_last_index", 0)
    if select_last_index == 0:
      arg_max = cls.make_tensor_from_onnx_node(node, **kwargs)
    else:
      # reverse the input and apply argmax on that to get last occurrence of max
      x = kwargs["tensor_dict"][node.inputs[0]]
      x = tf.reverse(x, axis=[axis])
      arg_max = cls.make_tensor_from_onnx_node(node, inputs=[x], **kwargs)
      # adjust indices to account for the reverse
      arg_max = tf_shape(x)[axis] - arg_max - 1
    if keepdims == 1:
      return [tf.expand_dims(arg_max, axis=axis)]
    return [arg_max] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:18,代碼來源:arg_max.py

示例14: calculate_generalized_advantage_estimator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  # pylint: disable=g-doc-args
  """Generalized advantage estimator.

  Returns:
    GAE estimator. It will be one element shorter than the input; this is
    because to compute GAE for [0, ..., N-1] one needs V for [1, ..., N].
  """
  # pylint: enable=g-doc-args

  next_value = value[1:, :]
  next_not_done = 1 - tf.cast(done[1:, :], tf.float32)
  delta = (reward[:-1, :] + gae_gamma * next_value * next_not_done
           - value[:-1, :])

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:ppo.py

示例15: bw_dynamic_rnn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reverse [as 別名]
def bw_dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
                   dtype=None, parallel_iterations=None, swap_memory=False,
                   time_major=False, scope=None):
    assert not time_major  # TODO : to be implemented later!

    flat_inputs = flatten(inputs, 2)  # [-1, J, d]
    flat_len = None if sequence_length is None else tf.cast(flatten(sequence_length, 0), 'int64')

    flat_inputs = tf.reverse(flat_inputs, 1) if sequence_length is None \
        else tf.reverse_sequence(flat_inputs, sequence_length, 1)
    flat_outputs, final_state = _dynamic_rnn(cell, flat_inputs, sequence_length=flat_len,
                                             initial_state=initial_state, dtype=dtype,
                                             parallel_iterations=parallel_iterations, swap_memory=swap_memory,
                                             time_major=time_major, scope=scope)
    flat_outputs = tf.reverse(flat_outputs, 1) if sequence_length is None \
        else tf.reverse_sequence(flat_outputs, sequence_length, 1)

    outputs = reconstruct(flat_outputs, inputs, 2)
    return outputs, final_state 
開發者ID:yyht,項目名稱:BERT,代碼行數:21,代碼來源:rnn.py


注:本文中的tensorflow.reverse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。