當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.repeat方法代碼示例

本文整理匯總了Python中tensorflow.repeat方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.repeat方法的具體用法?Python tensorflow.repeat怎麽用?Python tensorflow.repeat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.repeat方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sparse_add_self_loops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def sparse_add_self_loops(indices, N=None):
    """
    Given the indices of a square SparseTensor, adds the diagonal entries (i, i)
    and returns the reordered indices.
    :param indices: Tensor of rank 2, the indices to a SparseTensor.
    :param N: the size of the N x N SparseTensor indexed by the indices. If `None`,
    N is calculated as the maximum entry in the indices plus 1.
    :return: Tensor of rank 2, the indices to a SparseTensor.
    """
    N = tf.reduce_max(indices) + 1 if N is None else N
    row, col = indices[..., 0], indices[..., 1]
    mask = tf.ensure_shape(row != col, row.shape)
    sl_indices = tf.range(N, dtype=row.dtype)[:, None]
    sl_indices = tf.repeat(sl_indices, 2, -1)
    indices = tf.concat((indices[mask], sl_indices), 0)
    dummy_values = tf.ones_like(indices[:, 0])
    indices, _ = gen_sparse_ops.sparse_reorder(indices, dummy_values, (N, N))
    return indices 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:20,代碼來源:sparse.py

示例2: _get_forward_rate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def _get_forward_rate(self, valuation_date, market):
    """Returns the relevant forward rates from the market data."""

    forward_rates = market.reference_curve.get_forward_rate(
        self._accrual_start_dates,
        self._accrual_end_dates,
        self._daycount_fractions)

    forward_rates = tf.where(self._daycount_fractions > 0.0, forward_rates,
                             tf.zeros_like(forward_rates))

    libor_rate = rc.get_rate_index(
        market, self._start_date, rc.RateIndexType.LIBOR, dtype=self._dtype)
    libor_rate = tf.repeat(
        tf.convert_to_tensor(libor_rate, dtype=self._dtype), self._num_caplets)
    forward_rates = tf.where(
        self._accrual_end_dates < valuation_date,
        tf.constant(0., dtype=self._dtype),
        tf.where(self._accrual_start_dates < valuation_date, libor_rate,
                 forward_rates))

    return forward_rates 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:24,代碼來源:cap_floor.py

示例3: _setup_tensors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def _setup_tensors(self):
    """Sets up tensors for efficient computations."""
    date_schedule = dates.PeriodicSchedule(
        start_date=self._start_date,
        end_date=self._maturity_date,
        tenor=self._reset_frequency).dates()

    # rates reset at the begining of coupon period
    reset_dates = date_schedule[:, :-1]
    # payments occur at the end of the coupon period
    payment_dates = date_schedule[:, 1:]
    daycount_fractions = rc.get_daycount_fraction(
        date_schedule[:, :-1],
        date_schedule[:, 1:],
        self._daycount_convention,
        dtype=self._dtype)
    contract_index = tf.repeat(
        tf.range(0, self._batch_size),
        payment_dates.shape.as_list()[-1])

    self._num_caplets = daycount_fractions.shape.as_list()[-1]
    # TODO(b/152164086): Use the functionality from dates library
    self._rate_term = tf.repeat(tf.cast(reset_dates[:, 0].days_until(
        payment_dates[:, 0]), dtype=self._dtype) / 365.0, self._num_caplets)
    self._reset_dates = dates.DateTensor.reshape(reset_dates, [-1])
    self._payment_dates = dates.DateTensor.reshape(payment_dates, [-1])
    self._accrual_start_dates = dates.DateTensor.reshape(reset_dates, [-1])
    self._accrual_end_dates = dates.DateTensor.reshape(payment_dates, [-1])
    self._daycount_fractions = tf.reshape(daycount_fractions, [-1])
    self._contract_index = contract_index
    self._strike = tf.repeat(self._strike, self._num_caplets)
    self._is_cap = tf.repeat(self._is_cap, self._num_caplets) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:34,代碼來源:cap_floor.py

示例4: price

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the stream on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the cashflow stream.
      model: An optional input of type `InterestRateModelType` to specify which
        model to use for pricing.
        Default value: `None` in which case `NORMAL_RATE` model is used.
      pricing_context: An optional input to provide additional parameters (such
        as model parameters) relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each stream
      contract based on the input market data.
    """

    name = name or (self._name + '_price')
    with tf.name_scope(name):
      valuation_date = dates.convert_to_date_tensor(valuation_date)
      discount_curve = market.discount_curve
      past_fixing = rc.get_rate_index(
          market, self._start_date, rc.RateIndexType.SWAP, dtype=self._dtype)
      past_fixing = tf.repeat(
          tf.convert_to_tensor(past_fixing, dtype=self._dtype),
          self._num_cashflows)

      discount_factors = discount_curve.get_discount_factor(self._payment_dates)
      cms_rates = self._swap.par_rate(valuation_date, market, model)

      cms_rates = tf.where(self._daycount_fractions > 0., cms_rates,
                           tf.zeros_like(cms_rates))
      # If coupon end date is before the valuation date, the payment is in the
      # past. If valuation date is between coupon start date and coupon end
      # date, then the rate has been fixed but not paid. Otherwise the rate is
      # not fixed and should be read from the curve.
      cms_rates = tf.where(
          self._coupon_end_dates < valuation_date,
          tf.constant(0., dtype=self._dtype),
          tf.where(self._coupon_start_dates < valuation_date,
                   past_fixing, cms_rates))
      cms_rates = self._adjust_convexity(
          valuation_date, market, model, pricing_context, cms_rates,
          discount_factors)

      coupon_rate = self._coupon_multiplier * (
          cms_rates + self._coupon_basis)

      cashflow_pvs = self._notional * (
          self._daycount_fractions * coupon_rate * discount_factors)
      return tf.math.segment_sum(cashflow_pvs, self._contract_index) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:58,代碼來源:cms_swap.py

示例5: _setup

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def _setup(self, coupon_spec):
    """Setup tensors for efficient computations."""

    if isinstance(coupon_spec, list):
      cpn_frequency = dates.PeriodTensor.stack(
          [x.coupon_frequency for x in coupon_spec], axis=0)
      businessday_rule = coupon_spec[-1].businessday_rule
      notional = tf.convert_to_tensor([x.notional for x in coupon_spec],
                                      dtype=self._dtype)
      fixed_rate = tf.convert_to_tensor([x.coupon_rate for x in coupon_spec],
                                        dtype=self._dtype)
      daycount_convention = coupon_spec[-1].daycount_convention
    else:
      cpn_frequency = coupon_spec.coupon_frequency
      businessday_rule = coupon_spec.businessday_rule
      notional = tf.broadcast_to(
          tf.convert_to_tensor(coupon_spec.notional, dtype=self._dtype),
          self._start_date.shape)
      fixed_rate = tf.broadcast_to(
          tf.convert_to_tensor(coupon_spec.coupon_rate, dtype=self._dtype),
          self._start_date.shape)
      daycount_convention = coupon_spec.daycount_convention

    cpn_dates, _ = self._generate_schedule(cpn_frequency, businessday_rule)
    payment_dates = cpn_dates[:, 1:]

    notional = tf.repeat(notional, payment_dates.shape.as_list()[-1])
    daycount_fractions = rc.get_daycount_fraction(
        cpn_dates[:, :-1],
        cpn_dates[:, 1:],
        daycount_convention,
        dtype=self._dtype)

    coupon_rate = tf.expand_dims(fixed_rate, axis=-1)
    coupon_rate = tf.repeat(coupon_rate, payment_dates.shape.as_list()[-1])
    contract_index = tf.repeat(tf.range(0, self._batch_size),
                               payment_dates.shape.as_list()[-1])

    self._num_cashflows = payment_dates.shape.as_list()[-1]
    self._payment_dates = payment_dates.reshape([-1])
    self._notional = notional
    self._daycount_fractions = tf.reshape(daycount_fractions, [-1])
    self._coupon_rate = coupon_rate
    self._fixed_rate = tf.convert_to_tensor(fixed_rate, dtype=self._dtype)
    self._contract_index = contract_index 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:47,代碼來源:cashflow_stream.py

示例6: price

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import repeat [as 別名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the stream on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the cashflow stream.
      model: Reserved for future use.
      pricing_context: Additional context relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each stream
      contract based on the input market data.
    """

    del model, pricing_context
    name = name or (self._name + '_price')
    with tf.name_scope(name):
      discount_curve = market.discount_curve
      reference_curve = market.reference_curve
      libor_rate = rc.get_rate_index(market, self._start_date,
                                     rc.RateIndexType.LIBOR,
                                     dtype=self._dtype)
      libor_rate = tf.repeat(tf.convert_to_tensor(
          libor_rate, dtype=self._dtype), self._num_cashflows)

      discount_factors = discount_curve.get_discount_factor(self._payment_dates)
      forward_rates = reference_curve.get_forward_rate(self._accrual_start_date,
                                                       self._accrual_end_date,
                                                       self._daycount_fractions)

      forward_rates = tf.where(self._daycount_fractions > 0., forward_rates,
                               tf.zeros_like(forward_rates))
      # If coupon end date is before the valuation date, the payment is in the
      # past. If valuation date is between coupon start date and coupon end
      # date, then the rate has been fixed but not paid. Otherwise the rate is
      # not fixed and should be read from the curve.
      forward_rates = tf.where(
          self._coupon_end_dates < valuation_date,
          tf.constant(0., dtype=self._dtype),
          tf.where(self._coupon_start_dates < valuation_date,
                   libor_rate, forward_rates))

      coupon_rate = self._coupon_multiplier * (
          forward_rates + self._coupon_basis)

      cashflow_pvs = self._notional * (
          self._daycount_fractions * coupon_rate * discount_factors)
      return tf.math.reduce_sum(
          tf.reshape(cashflow_pvs, (self._batch_size, self._num_cashflows)),
          axis=1) 
開發者ID:google,項目名稱:tf-quant-finance,代碼行數:57,代碼來源:cashflow_stream.py


注:本文中的tensorflow.repeat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。