本文整理匯總了Python中tensorflow.relu方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.relu方法的具體用法?Python tensorflow.relu怎麽用?Python tensorflow.relu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.relu方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: double_discriminator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def double_discriminator(x, filters1=128, filters2=None,
kernel_size=8, strides=4, pure_mean=False):
"""A convolutional discriminator with 2 layers and concatenated output."""
if filters2 is None:
filters2 = 4 * filters1
with tf.variable_scope("discriminator"):
batch_size = shape_list(x)[0]
net = layers().Conv2D(
filters1, kernel_size, strides=strides, padding="SAME", name="conv1")(x)
if pure_mean:
net1 = tf.reduce_mean(net, [1, 2])
else:
net1 = mean_with_attention(net, "mean_with_attention1")
tf.reshape(net, [batch_size, -1])
net = tf.nn.relu(net)
net = layers().Conv2D(
filters2, kernel_size, strides=strides, padding="SAME", name="conv2")(x)
if pure_mean:
net2 = tf.reduce_mean(net, [1, 2])
else:
net2 = mean_with_attention(net, "mean_with_attention2")
return tf.concat([net1, net2], axis=-1)
示例2: double_discriminator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def double_discriminator(x, filters1=128, filters2=None,
kernel_size=8, strides=4, pure_mean=False):
"""A convolutional discriminator with 2 layers and concatenated output."""
if filters2 is None:
filters2 = 4 * filters1
with tf.variable_scope("discriminator"):
batch_size = shape_list(x)[0]
net = tf.layers.conv2d(
x, filters1, kernel_size, strides=strides, padding="SAME", name="conv1")
if pure_mean:
net1 = tf.reduce_mean(net, [1, 2])
else:
net1 = mean_with_attention(net, "mean_with_attention1")
tf.reshape(net, [batch_size, -1])
net = tf.nn.relu(net)
net = tf.layers.conv2d(
x, filters2, kernel_size, strides=strides, padding="SAME", name="conv2")
if pure_mean:
net2 = tf.reduce_mean(net, [1, 2])
else:
net2 = mean_with_attention(net, "mean_with_attention2")
return tf.concat([net1, net2], axis=-1)
示例3: conv_stride2_multistep
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None):
"""Use a strided convolution to downsample x by 2, `nbr_steps` times.
We use stride and filter size 2 to avoid the checkerboard problem of deconvs.
As detailed in http://distill.pub/2016/deconv-checkerboard/.
Args:
x: a `Tensor` with shape `[batch, spatial, depth]` or
`[batch, spatial_1, spatial_2, depth]`
nbr_steps: number of halving downsample rounds to apply
output_filters: an int specifying the filter count for the convolutions
name: a string
reuse: a boolean
Returns:
a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or
`[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps),
output_filters]`
"""
with tf.variable_scope(
name, default_name="conv_stride2_multistep", values=[x], reuse=reuse):
if nbr_steps == 0:
out = conv(x, output_filters, (1, 1))
return out, [out]
hidden_layers = [x]
for i in range(nbr_steps):
hidden_layers.append(
conv(
hidden_layers[-1],
output_filters, (2, 2),
strides=2,
activation=tf.nn.relu,
name="conv" + str(i)))
return hidden_layers[-1], hidden_layers
示例4: hard_sigmoid
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def hard_sigmoid(x, saturation_limit=0.9):
saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit))
x_shifted = 0.5 * x + 0.5
return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
示例5: hard_tanh
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def hard_tanh(x, saturation_limit=0.9):
saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit))
return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
示例6: relu_density_logit
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def relu_density_logit(x, reduce_dims):
"""logit(density(x)).
Useful for histograms.
Args:
x: a Tensor, typically the output of tf.relu
reduce_dims: a list of dimensions
Returns:
a Tensor
"""
frac = tf.reduce_mean(tf.to_float(x > 0.0), reduce_dims)
scaled = tf.log(frac + math.exp(-10)) - tf.log((1.0 - frac) + math.exp(-10))
return scaled
示例7: sepconv_relu_sepconv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def sepconv_relu_sepconv(inputs,
filter_size,
output_size,
first_kernel_size=(1, 1),
second_kernel_size=(1, 1),
padding="LEFT",
nonpadding_mask=None,
dropout=0.0,
name=None):
"""Hidden layer with RELU activation followed by linear projection."""
with tf.variable_scope(name, "sepconv_relu_sepconv", [inputs]):
inputs = maybe_zero_out_padding(inputs, first_kernel_size, nonpadding_mask)
if inputs.get_shape().ndims == 3:
is_3d = True
inputs = tf.expand_dims(inputs, 2)
else:
is_3d = False
h = separable_conv(
inputs,
filter_size,
first_kernel_size,
activation=tf.nn.relu,
padding=padding,
name="conv1")
if dropout != 0.0:
h = tf.nn.dropout(h, 1.0 - dropout)
h = maybe_zero_out_padding(h, second_kernel_size, nonpadding_mask)
ret = separable_conv(
h, output_size, second_kernel_size, padding=padding, name="conv2")
if is_3d:
ret = tf.squeeze(ret, 2)
return ret
# DEPRECATED - use dense_relu_dense, conv_relu_conv, sepconv_relu_sepconv
示例8: conv_hidden_relu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def conv_hidden_relu(inputs,
hidden_size,
output_size,
kernel_size=(1, 1),
second_kernel_size=(1, 1),
dropout=0.0,
**kwargs):
"""Hidden layer with RELU activation followed by linear projection."""
name = kwargs.pop("name") if "name" in kwargs else None
with tf.variable_scope(name, "conv_hidden_relu", [inputs]):
if inputs.get_shape().ndims == 3:
is_3d = True
inputs = tf.expand_dims(inputs, 2)
else:
is_3d = False
conv_f1 = conv if kernel_size == (1, 1) else separable_conv
h = conv_f1(
inputs,
hidden_size,
kernel_size,
activation=tf.nn.relu,
name="conv1",
**kwargs)
if dropout != 0.0:
h = tf.nn.dropout(h, 1.0 - dropout)
conv_f2 = conv if second_kernel_size == (1, 1) else separable_conv
ret = conv_f2(h, output_size, second_kernel_size, name="conv2", **kwargs)
if is_3d:
ret = tf.squeeze(ret, 2)
return ret
示例9: brelu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def brelu(x):
"""Bipolar ReLU as in https://arxiv.org/abs/1709.04054."""
x_shape = shape_list(x)
x1, x2 = tf.split(tf.reshape(x, x_shape[:-1] + [-1, 2]), 2, axis=-1)
y1 = tf.nn.relu(x1)
y2 = -tf.nn.relu(-x2)
return tf.reshape(tf.concat([y1, y2], axis=-1), x_shape)
示例10: relu_density_logit
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def relu_density_logit(x, reduce_dims):
"""logit(density(x)).
Useful for histograms.
Args:
x: a Tensor, typically the output of tf.relu
reduce_dims: a list of dimensions
Returns:
a Tensor
"""
frac = tf.reduce_mean(to_float(x > 0.0), reduce_dims)
scaled = tf.log(frac + math.exp(-10)) - tf.log((1.0 - frac) + math.exp(-10))
return scaled
示例11: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def __init__(self, num_parameters, D=20, boundary=3.0, conv=False, init_fcn=None, kernel='gaussian', **kwargs):
self.num_parameters = num_parameters
self.D = D
self.boundary = boundary
self.init_fcn = init_fcn
self.conv = conv
if self.conv:
self.unsqueeze_dim = 4
else:
self.unsqueeze_dim = 2
self.kernel = kernel
if not (kernel in ['gaussian', 'relu', 'softplus']):
raise ValueError('Kernel not recognized (must be {gaussian, relu, softplus})')
super().__init__(**kwargs)
示例12: relu_kernel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def relu_kernel(self, x):
return tf.relu(tf.expand_dims(x, axis=self.unsqueeze_dim) - self.dict)
示例13: conv_stride2_multistep
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None):
"""Use a strided convolution to downsample x by 2, `nbr_steps` times.
We use stride and filter size 2 to avoid the checkerboard problem of deconvs.
As detailed in http://distill.pub/2016/deconv-checkerboard/.
Args:
x: a `Tensor` with shape `[batch, spatial, depth]` or
`[batch, spatial_1, spatial_2, depth]`
nbr_steps: number of halving downsample rounds to apply
output_filters: an int specifying the filter count for the convolutions
name: a string
reuse: a boolean
Returns:
a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or
`[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps),
output_filters]`
"""
with tf.variable_scope(
name, default_name="conv_stride2_multistep", values=[x], reuse=reuse):
if nbr_steps == 0:
out = conv(x, output_filters, (1, 1))
return out, [out]
hidden_layers = [x]
for i in xrange(nbr_steps):
hidden_layers.append(
conv(
hidden_layers[-1],
output_filters, (2, 2),
strides=2,
activation=tf.nn.relu,
name="conv" + str(i)))
return hidden_layers[-1], hidden_layers
示例14: conv_hidden_relu
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import relu [as 別名]
def conv_hidden_relu(inputs,
hidden_size,
output_size,
kernel_size=(1, 1),
summaries=True,
dropout=0.0,
**kwargs):
"""Hidden layer with RELU activation followed by linear projection."""
name = kwargs.pop("name") if "name" in kwargs else None
with tf.variable_scope(name, "conv_hidden_relu", [inputs]):
if inputs.get_shape().ndims == 3:
is_3d = True
inputs = tf.expand_dims(inputs, 2)
else:
is_3d = False
h = conv(
inputs,
hidden_size,
kernel_size,
activation=tf.nn.relu,
name="conv1",
**kwargs)
if dropout != 0.0:
h = tf.nn.dropout(h, 1.0 - dropout)
if summaries and not tf.get_variable_scope().reuse:
tf.summary.histogram("hidden_density_logit",
relu_density_logit(
h, list(range(inputs.shape.ndims - 1))))
ret = conv(h, output_size, (1, 1), name="conv2", **kwargs)
if is_3d:
ret = tf.squeeze(ret, 2)
return ret