當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reduce_prod方法代碼示例

本文整理匯總了Python中tensorflow.reduce_prod方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_prod方法的具體用法?Python tensorflow.reduce_prod怎麽用?Python tensorflow.reduce_prod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reduce_prod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_autosummary_var

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def _create_autosummary_var(name, value_expr):
    assert not _autosummary_finalized
    v = tf.cast(value_expr, tf.float32)
    if v.shape.ndims is 0:
        v = [v, np.float32(1.0)]
    elif v.shape.ndims is 1:
        v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
    else:
        v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
    v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
    with tf.control_dependencies(None):
        var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
    update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
    if name in _autosummary_vars:
        _autosummary_vars[name].append(var)
    else:
        _autosummary_vars[name] = [var]
    return update_op

#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:24,代碼來源:tfutil.py

示例2: gather_indices_2d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def gather_indices_2d(x, block_shape, block_stride):
  """Getting gather indices."""
  # making an identity matrix kernel
  kernel = tf.eye(block_shape[0] * block_shape[1])
  kernel = reshape_range(kernel, 0, 1, [block_shape[0], block_shape[1], 1])
  # making indices [1, h, w, 1] to appy convs
  x_shape = common_layers.shape_list(x)
  indices = tf.range(x_shape[2] * x_shape[3])
  indices = tf.reshape(indices, [1, x_shape[2], x_shape[3], 1])
  indices = tf.nn.conv2d(
      tf.cast(indices, tf.float32),
      kernel,
      strides=[1, block_stride[0], block_stride[1], 1],
      padding="VALID")
  # making indices [num_blocks, dim] to gather
  dims = common_layers.shape_list(indices)[:3]
  if all([isinstance(dim, int) for dim in dims]):
    num_blocks = functools.reduce(operator.mul, dims, 1)
  else:
    num_blocks = tf.reduce_prod(dims)
  indices = tf.reshape(indices, [num_blocks, -1])
  return tf.cast(indices, tf.int32) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_attention.py

示例3: build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def build(self, input_shape=None):
        self.layer.input_spec = InputSpec(shape=input_shape)
        if hasattr(self.layer, 'built') and not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True

        # initialise p
        self.p_logit = self.add_weight(name='p_logit', shape=(1,),
                                       initializer=initializers.RandomUniform(self.init_min, self.init_max),
                                       dtype=tf.float32, trainable=True)
        self.p = tf.nn.sigmoid(self.p_logit)
        tf.compat.v1.add_to_collection("LAYER_P", self.p)

        # initialise regularizer / prior KL term
        input_dim = tf.reduce_prod(input_shape[1:])  # we drop only last dim
        weight = self.layer.kernel
        kernel_regularizer = self.weight_regularizer * tf.reduce_sum(tf.square(weight)) / (1. - self.p)
        dropout_regularizer = self.p * tf.math.log(self.p)
        dropout_regularizer += (1. - self.p) * tf.math.log(1. - self.p)
        dropout_regularizer *= self.dropout_regularizer * tf.cast(input_dim, tf.float32)
        regularizer = tf.reduce_sum(kernel_regularizer + dropout_regularizer)
        self.layer.add_loss(regularizer)
        # Add the regularisation loss to collection.
        tf.compat.v1.add_to_collection(tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES, regularizer) 
開發者ID:henrysky,項目名稱:astroNN,代碼行數:26,代碼來源:layers.py

示例4: intpow_avx2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def intpow_avx2(x, n):
    """
    Calculate integer power of float (including negative) even with Tensorflow compiled with AVX2 since --fast-math
    compiler flag aggressively optimize float operation which is common with AVX2 flag

    :param x: identifier
    :type x: tf.Tensor
    :param n: an integer power (a float will be casted to integer!!)
    :type n: int
    :return: powered float(s)
    :rtype: tf.Tensor
    :History: 2018-Aug-13 - Written - Henry Leung (University of Toronto)
    """
    import tensorflow as tf

    # expand inputs to prepare to be tiled
    expanded_inputs = tf.expand_dims(x, 1)
    # we want [1, self.n]
    return tf.reduce_prod(tf.tile(expanded_inputs, [1, n]), axis=-1) 
開發者ID:henrysky,項目名稱:astroNN,代碼行數:21,代碼來源:__init__.py

示例5: tf_ms_ssim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
    weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
    mssim = []
    mcs = []
    for l in range(level):
        ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
        mssim.append(tf.reduce_mean(ssim_map))
        mcs.append(tf.reduce_mean(cs_map))
        filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME')
        filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME')
        img1 = filtered_im1
        img2 = filtered_im2

    # list to tensor of dim D+1
    mssim = tf.stack(mssim, axis=0)
    mcs = tf.stack(mcs, axis=0)

    value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])*
                                    (mssim[level-1]**weight[level-1]))

    if mean_metric:
        value = tf.reduce_mean(value)
    return value 
開發者ID:Lvfeifan,項目名稱:MBLLEN,代碼行數:25,代碼來源:utls.py

示例6: dmi_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def dmi_loss(config, logits, labels, **kargs):
	# N x C
	probs = tf.exp(tf.nn.log_softmax(logits, axis=-1))
	input_shape_list = bert_utils.get_shape_list(logits, expected_rank=[2])
	# N x C
	one_hot_labels = tf.one_hot(labels, depth=kargs.get('num_classes', 2), dtype=tf.float32)

	# C x N matmul N x C
	mat = tf.matmul(tf.stop_gradient(one_hot_labels), probs, transpose_a=True) #
	print('==mutul informaton shape==', mat.get_shape())
	per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
												logits=logits, 
												labels=tf.stop_gradient(labels))

	mat_det = tf.reduce_prod(tf.abs((tf.linalg.svd(mat, compute_uv=False))))
	loss = -tf.reduce_sum(tf.log(1e-10+mat_det))
	return loss, per_example_loss 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:loss_utils.py

示例7: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def __call__(self,input_var,name=None,**kwargs) :
        if( input_var.shape.ndims > 2 ) :
            dims = tf.reduce_prod(tf.shape(input_var)[1:])
            input_var = tf.reshape(input_var,[-1,dims])

        def _init():
            v_norm = tf.nn.l2_normalize(self.v,axis=0)
            t = tf.matmul(input_var,v_norm)
            mu,var = tf.nn.moments(t,axes=[0])
            std = tf.sqrt(var+self.epsilon)
            return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]

        require_init = tf.reduce_any(tf.is_nan(self.g))
        init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])

        with tf.control_dependencies(init_ops):
            w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0)
            return tf.matmul(input_var,w)+self.b 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:20,代碼來源:ops.py

示例8: additive_walk_embedding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def additive_walk_embedding(predicate_embeddings):
    """
    Takes a walk, represented by a 3D Tensor with shape (batch_size, walk_length, embedding_length),
    and computes its embedding using a simple additive models.
    This method is roughly equivalent to:
    > walk_embedding = tf.reduce_prod(predicate_embeddings, axis=1)

    :param predicate_embeddings: 3D Tensor containing the embedding of the predicates in the walk.
    :return: 2D tensor of size (batch_size, embedding_length) containing the walk embeddings.
    """
    batch_size, embedding_len = tf.shape(predicate_embeddings)[0], tf.shape(predicate_embeddings)[2]

    # Transpose the (batch_size, walk_length, n) Tensor in a (walk_length, batch_size, n) Tensor
    transposed_embedding_matrix = tf.transpose(predicate_embeddings, perm=[1, 0, 2])

    # Define the initializer of the scan procedure - an all-zeros matrix
    initializer = tf.zeros((batch_size, embedding_len), dtype=predicate_embeddings.dtype)

    # The walk embeddings are given by the sum of the predicate embeddings
    # where zero is the neutral element wrt. the element-wise sum
    walk_embedding = tf.scan(lambda x, y: x + y, transposed_embedding_matrix, initializer=initializer)

    # Add the initializer as the first step in the scan sequence, in case the walk has zero-length
    return tf.concat(values=[tf.expand_dims(initializer, 0), walk_embedding], axis=0)[-1] 
開發者ID:uclnlp,項目名稱:inferbeddings,代碼行數:26,代碼來源:embeddings.py

示例9: bilinear_diagonal_walk_embedding

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def bilinear_diagonal_walk_embedding(predicate_embeddings):
    """
    Takes a walk, represented by a 3D Tensor with shape (batch_size, walk_length, embedding_length),
    and computes its embedding using a simple bilinear diagonal models.
    This method is roughly equivalent to:
    > walk_embedding = tf.reduce_prod(predicate_embeddings, axis=1)

    :param predicate_embeddings: 3D Tensor containing the embedding of the predicates in the walk.
    :return: 2D tensor of size (batch_size, embedding_length) containing the walk embeddings.
    """
    batch_size, embedding_len = tf.shape(predicate_embeddings)[0], tf.shape(predicate_embeddings)[2]

    # Transpose the (batch_size, walk_length, n) Tensor in a (walk_length, batch_size, n) Tensor
    transposed_embedding_matrix = tf.transpose(predicate_embeddings, perm=[1, 0, 2])

    # Define the initializer of the scan procedure - an all-ones matrix
    # where one is the neutral element wrt. the element-wise product
    initializer = tf.ones((batch_size, embedding_len), dtype=predicate_embeddings.dtype)

    # The walk embeddings are given by the element-wise product of the predicate embeddings
    walk_embedding = tf.scan(lambda x, y: x * y, transposed_embedding_matrix, initializer=initializer)

    # Add the initializer as the first step in the scan sequence, in case the walk has zero-length
    return tf.concat(values=[tf.expand_dims(initializer, 0), walk_embedding], axis=0)[-1] 
開發者ID:uclnlp,項目名稱:inferbeddings,代碼行數:26,代碼來源:embeddings.py

示例10: hypervolume

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def hypervolume(self, reference):
        """
        Autoflow method to calculate the hypervolume indicator

        The hypervolume indicator is the volume of the dominated region.

        :param reference: reference point to use
            Should be equal or bigger than the anti-ideal point of the Pareto set
            For comparing results across runs the same reference point must be used
        :return: hypervolume indicator (the higher the better)
        """

        min_pf = tf.reduce_min(self.front, 0, keep_dims=True)
        R = tf.expand_dims(reference, 0)
        pseudo_pf = tf.concat((min_pf, self.front, R), 0)
        D = tf.shape(pseudo_pf)[1]
        N = tf.shape(self.bounds.ub)[0]

        idx = tf.tile(tf.expand_dims(tf.range(D), -1),[1, N])
        ub_idx = tf.reshape(tf.stack([tf.transpose(self.bounds.ub), idx], axis=2), [N * D, 2])
        lb_idx = tf.reshape(tf.stack([tf.transpose(self.bounds.lb), idx], axis=2), [N * D, 2])
        ub = tf.reshape(tf.gather_nd(pseudo_pf, ub_idx), [D, N])
        lb = tf.reshape(tf.gather_nd(pseudo_pf, lb_idx), [D, N])
        hv = tf.reduce_sum(tf.reduce_prod(ub - lb, 0))
        return tf.reduce_prod(R - min_pf) - hv 
開發者ID:GPflow,項目名稱:GPflowOpt,代碼行數:27,代碼來源:pareto.py

示例11: _call_sampler

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def _call_sampler(sample_n_fn, sample_shape, name=None):
    """Reshapes vector of samples."""
    with tf.name_scope(name or "call_sampler"):
        sample_shape = tf.convert_to_tensor(
            sample_shape, dtype=tf.int32, name="sample_shape"
        )
        # Ensure sample_shape is a vector (vs just a scalar).
        pad = tf.cast(tf.equal(tf.rank(sample_shape), 0), tf.int32)
        sample_shape = tf.reshape(
            sample_shape,
            tf.pad(tf.shape(sample_shape), paddings=[[pad, 0]], constant_values=1),
        )
        samples = sample_n_fn(tf.reduce_prod(sample_shape))
        batch_event_shape = tf.shape(samples)[1:]
        final_shape = tf.concat([sample_shape, batch_event_shape], 0)
        return tf.reshape(samples, final_shape) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:18,代碼來源:sampler.py

示例12: tf_ms_ssim

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
    weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
    mssim = []
    mcs = []
    for l in range(level):
        ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
        mssim.append(tf.reduce_mean(ssim_map))
        mcs.append(tf.reduce_mean(cs_map))
        filtered_im1 = tf.nn.avg_pool(img1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        filtered_im2 = tf.nn.avg_pool(img2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
        img1 = filtered_im1
        img2 = filtered_im2

    # list to tensor of dim D+1
    mssim = tf.pack(mssim, axis=0)
    mcs = tf.pack(mcs, axis=0)

    value = (tf.reduce_prod(
        mcs[0:level-1]**weight[0:level-1]) * (mssim[level-1]**weight[level-1]))

    if mean_metric:
        value = tf.reduce_mean(value)
    return value 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:25,代碼來源:ssim.py

示例13: f_inter_box

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def f_inter_box(top_left_a, bot_right_a, top_left_b, bot_right_b):
  """Computes intersection area with boxes.
  Args:
    top_left_a: [B, T, 2] or [B, 2]
    bot_right_a: [B, T, 2] or [B, 2]
    top_left_b: [B, T, 2] or [B, 2]
    bot_right_b: [B, T, 2] or [B, 2]
  Returns:
    area: [B, T]
  """
  top_left_max = tf.maximum(top_left_a, top_left_b)
  bot_right_min = tf.minimum(bot_right_a, bot_right_b)
  ndims = tf.shape(tf.shape(top_left_a))

  # Check if the resulting box is valid.
  overlap = tf.to_float(top_left_max < bot_right_min)
  overlap = tf.reduce_prod(overlap, ndims - 1)
  area = tf.reduce_prod(bot_right_min - top_left_max, ndims - 1)
  area = overlap * tf.abs(area)
  return area 
開發者ID:renmengye,項目名稱:rec-attend-public,代碼行數:22,代碼來源:modellib.py

示例14: f_iou_box_old

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def f_iou_box_old(top_left_a, bot_right_a, top_left_b, bot_right_b):
  """Computes IoU of boxes.
  Args:
    top_left_a: [B, T, 2] or [B, 2]
    bot_right_a: [B, T, 2] or [B, 2]
    top_left_b: [B, T, 2] or [B, 2]
    bot_right_b: [B, T, 2] or [B, 2]
  Returns:
    iou: [B, T]
  """
  inter_area = f_inter_box(top_left_a, bot_right_a, top_left_b, bot_right_b)
  inter_area = tf.maximum(inter_area, 1e-6)
  ndims = tf.shape(tf.shape(top_left_a))
  # area_a = tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
  # area_b = tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
  check_a = tf.reduce_prod(tf.to_float(top_left_a < bot_right_a), ndims - 1)
  area_a = check_a * tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
  check_b = tf.reduce_prod(tf.to_float(top_left_b < bot_right_b), ndims - 1)
  area_b = check_b * tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
  union_area = (area_a + area_b - inter_area + 1e-5)
  union_area = tf.maximum(union_area, 1e-5)
  iou = inter_area / union_area
  iou = tf.maximum(iou, 1e-5)
  iou = tf.minimum(iou, 1.0)
  return iou 
開發者ID:renmengye,項目名稱:rec-attend-public,代碼行數:27,代碼來源:modellib.py

示例15: get_filled_box_idx

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_prod [as 別名]
def get_filled_box_idx(idx, top_left, bot_right):
  """Fill a box with top left and bottom right coordinates.
  Args:
    idx: [B, T, H, W, 2] or [B, H, W, 2] or [H, W, 2]
    top_left: [B, T, 2] or [B, 2] or [2]
    bot_right: [B, T, 2] or [B, 2] or [2]
  """
  ss = tf.shape(idx)
  ndims = tf.shape(ss)
  batch = tf.slice(ss, [0], ndims - 3)
  coord_shape = tf.concat(0, [batch, tf.constant([1, 1, 2])])
  top_left = tf.reshape(top_left, coord_shape)
  bot_right = tf.reshape(bot_right, coord_shape)
  lower = tf.reduce_prod(tf.to_float(idx >= top_left), ndims - 1)
  upper = tf.reduce_prod(tf.to_float(idx <= bot_right), ndims - 1)
  box = lower * upper

  return box 
開發者ID:renmengye,項目名稱:rec-attend-public,代碼行數:20,代碼來源:modellib.py


注:本文中的tensorflow.reduce_prod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。