當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reduce_mean方法代碼示例

本文整理匯總了Python中tensorflow.reduce_mean方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_mean方法的具體用法?Python tensorflow.reduce_mean怎麽用?Python tensorflow.reduce_mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reduce_mean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:22,代碼來源:optimization_test.py

示例2: _build_input

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def _build_input(self):
        self.tails = tf.placeholder(tf.int32, [None])
        self.heads = tf.placeholder(tf.int32, [None])
        self.targets = tf.one_hot(indices=self.heads, depth=self.num_entity)
            
        if not self.query_is_language:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step])
            self.query_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_query + 1, # <END> token 
                                                          self.query_embed_size), 
                                                      dtype=tf.float32)
        
            rnn_inputs = tf.nn.embedding_lookup(self.query_embedding_params, 
                                                self.queries)
        else:
            self.queries = tf.placeholder(tf.int32, [None, self.num_step, self.num_word])
            self.vocab_embedding_params = tf.Variable(self._random_uniform_unit(
                                                          self.num_vocab + 1, # <END> token
                                                          self.vocab_embed_size),
                                                      dtype=tf.float32)
            embedded_query = tf.nn.embedding_lookup(self.vocab_embedding_params, 
                                                    self.queries)
            rnn_inputs = tf.reduce_mean(embedded_query, axis=2)

        return rnn_inputs 
開發者ID:fanyangxyz,項目名稱:Neural-LP,代碼行數:27,代碼來源:model.py

示例3: minibatch_stddev_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def minibatch_stddev_layer(x, group_size=4):
    with tf.variable_scope('MinibatchStddev'):
        group_size = tf.minimum(group_size, tf.shape(x)[0])     # Minibatch must be divisible by (or smaller than) group_size.
        s = x.shape                                             # [NCHW]  Input shape.
        y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]])   # [GMCHW] Split minibatch into M groups of size G.
        y = tf.cast(y, tf.float32)                              # [GMCHW] Cast to FP32.
        y -= tf.reduce_mean(y, axis=0, keep_dims=True)           # [GMCHW] Subtract mean over group.
        y = tf.reduce_mean(tf.square(y), axis=0)                # [MCHW]  Calc variance over group.
        y = tf.sqrt(y + 1e-8)                                   # [MCHW]  Calc stddev over group.
        y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True)      # [M111]  Take average over fmaps and pixels.
        y = tf.cast(y, x.dtype)                                 # [M111]  Cast back to original data type.
        y = tf.tile(y, [group_size, 1, s[2], s[3]])             # [N1HW]  Replicate over group and pixels.
        return tf.concat([x, y], axis=1)                        # [NCHW]  Append as new fmap.

#----------------------------------------------------------------------------
# Generator network used in the paper. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:18,代碼來源:networks.py

示例4: fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def fprop(self, x, y, **kwargs):
        kwargs.update(self.kwargs)
        if self.attack is not None:
            x = x, self.attack(x)
        else:
            x = x,

        # Catching RuntimeError: Variable -= value not supported by tf.eager.
        try:
            y -= self.smoothing * (y - 1. / tf.cast(y.shape[-1], y.dtype))
        except RuntimeError:
            y.assign_sub(self.smoothing * (y - 1. / tf.cast(y.shape[-1],
                                                            y.dtype)))

        logits = [self.model.get_logits(x, **kwargs) for x in x]
        loss = sum(
            tf.reduce_mean(softmax_cross_entropy_with_logits(labels=y,
                                                             logits=logit))
            for logit in logits)
        return loss 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:loss.py

示例5: createLinearModel

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def createLinearModel(dimension):
    np.random.seed(1024)
    # 定義 x 和 y
    x = tf.placeholder(tf.float64, shape=[None, dimension], name='x')
    # 寫成矩陣形式會大大加快運算速度
    y = tf.placeholder(tf.float64, shape=[None, 1], name='y')
    # 定義參數估計值和預測值
    betaPred = tf.Variable(np.random.random([dimension, 1]))
    yPred = tf.matmul(x, betaPred, name='y_pred')
    # 定義損失函數
    loss = tf.reduce_mean(tf.square(yPred - y))
    model = {
        'loss_function': loss,
        'independent_variable': x,
        'dependent_variable': y,
        'prediction': yPred,
        'model_params': betaPred
    }
    return model 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:21,代碼來源:2_tf_linear.py

示例6: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 231, 231
    eval_height, eval_width = 281, 281
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = overfeat.overfeat(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
                                    spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:overfeat_test.py

示例7: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 300, 400
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = alexnet.alexnet_v2(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
                                     spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 4, 7, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:alexnet_test.py

示例8: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 256, 256
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = vgg.vgg_a(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = vgg.vgg_a(eval_inputs, is_training=False,
                            spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:vgg_test.py

示例9: loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:cifar10.py

示例10: test_position_sensitive_with_single_bin

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def test_position_sensitive_with_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [2, 2]

    image = tf.random_uniform(image_shape)
    boxes = tf.random_uniform((6, 4))
    box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)

    # When a single bin is used, position-sensitive crop and pool should be
    # the same as non-position sensitive crop and pool.
    crop = tf.image.crop_and_resize(image, boxes, box_ind, crop_size)
    crop_and_pool = tf.reduce_mean(crop, [1, 2], keep_dims=True)

    ps_crop_and_pool = ops.position_sensitive_crop_regions(
        image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)

    with self.test_session() as sess:
      expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
      self.assertAllClose(output, expected_output) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:ops_test.py

示例11: _BuildLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def _BuildLoss(self):
    # 1. reconstr_loss seems doesn't do better than l2 loss.
    # 2. Only works when using reduce_mean. reduce_sum doesn't work.
    # 3. It seems kl loss doesn't play an important role.
    self.loss = 0
    with tf.variable_scope('loss'):
      if self.params['l2_loss']:
        l2_loss = tf.reduce_mean(tf.square(self.diff_output - self.diffs[1]))
        tf.summary.scalar('l2_loss', l2_loss)
        self.loss += l2_loss
      if self.params['reconstr_loss']:
        reconstr_loss = (-tf.reduce_mean(
            self.diffs[1] * (1e-10 + self.diff_output) +
            (1-self.diffs[1]) * tf.log(1e-10 + 1 - self.diff_output)))
        reconstr_loss = tf.check_numerics(reconstr_loss, 'reconstr_loss')
        tf.summary.scalar('reconstr_loss', reconstr_loss)
        self.loss += reconstr_loss
      if self.params['kl_loss']:
        kl_loss = (0.5 * tf.reduce_mean(
            tf.square(self.z_mean) + tf.square(self.z_stddev) -
            2 * self.z_stddev_log - 1))
        tf.summary.scalar('kl_loss', kl_loss)
        self.loss += kl_loss

      tf.summary.scalar('loss', self.loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例12: _define_experience

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def _define_experience(self, observ, action, reward):
    """Implement the branch of experience() entered during training."""
    update_filters = tf.summary.merge([
        self._observ_filter.update(observ),
        self._reward_filter.update(reward)])
    with tf.control_dependencies([update_filters]):
      if self._config.train_on_agent_action:
        # NOTE: Doesn't seem to change much.
        action = self._last_action
      batch = observ, action, self._last_mean, self._last_logstd, reward
      append = self._episodes.append(batch, tf.range(len(self._batch_env)))
    with tf.control_dependencies([append]):
      norm_observ = self._observ_filter.transform(observ)
      norm_reward = tf.reduce_mean(self._reward_filter.transform(reward))
      # pylint: disable=g-long-lambda
      summary = tf.cond(self._should_log, lambda: tf.summary.merge([
          update_filters,
          self._observ_filter.summary(),
          self._reward_filter.summary(),
          tf.summary.scalar('memory_size', self._memory_index),
          tf.summary.histogram('normalized_observ', norm_observ),
          tf.summary.histogram('action', self._last_action),
          tf.summary.scalar('normalized_reward', norm_reward)]), str)
      return summary 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:26,代碼來源:algorithm.py

示例13: _update_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def _update_value(self, observ, reward, length):
    """Perform multiple update steps of the value baseline.

    We need to decide for the summary of one iteration, and thus choose the one
    after half of the iterations.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('update_value'):
      loss, summary = tf.scan(
          lambda _1, _2: self._update_value_step(observ, reward, length),
          tf.range(self._config.update_epochs_value),
          [0., ''], parallel_iterations=1)
      print_loss = tf.Print(0, [tf.reduce_mean(loss)], 'value loss: ')
      with tf.control_dependencies([loss, print_loss]):
        return summary[self._config.update_epochs_value // 2] 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:algorithm.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:36,代碼來源:siamese_network_semantic.py

示例15: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_mean [as 別名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                trainable=True,name="W")
            self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            #self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
            self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
            #self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)

        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:38,代碼來源:siamese_network.py


注:本文中的tensorflow.reduce_mean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。