本文整理匯總了Python中tensorflow.reduce_logsumexp方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_logsumexp方法的具體用法?Python tensorflow.reduce_logsumexp怎麽用?Python tensorflow.reduce_logsumexp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.reduce_logsumexp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: alpha
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def alpha(cls, parameters: Dict[str, Tensor]) -> Tensor:
mu = parameters["mu"]
tau = parameters["tau"]
nu = parameters["nu"]
beta = parameters["beta"]
sigma = 1./tf.sqrt(tau)
lam = 1./beta
muStd = tf.constant(0., dtype=mu.dtype)
sigmaStd = tf.constant(1., dtype=mu.dtype)
stdNorm = tf.contrib.distributions.Normal(loc=muStd, scale=sigmaStd)
c0 = lam*(mu-nu) + stdNorm.log_cdf((nu-(mu+sigma**2*lam))/sigma)
c1 = -lam*(mu-nu) + stdNorm.log_cdf(-(nu-(mu-sigma**2*lam))/sigma)
c = tf.reduce_logsumexp([c0, c1], axis=0)
f = (mu-nu)*lam
norm = tf.distributions.Normal(loc=mu+sigma**2*lam, scale=sigma)
alpha = tf.exp(f + norm.log_cdf(nu) - c)
return(alpha)
示例2: M_step
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def M_step(log_R, log_activation, vote, lambda_val=0.01):
R_shape = tf.shape(log_R)
log_R = log_R + log_activation
R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
log_normalized_R = log_R - tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)
pose = cl.reduce_sum(vote * tf.exp(log_normalized_R), axis=-3, keepdims=True)
log_var = tf.reduce_logsumexp(log_normalized_R + cl.log(tf.square(vote - pose)), axis=-3, keepdims=True)
beta_v = tf.get_variable('beta_v',
shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
initializer=tf.truncated_normal_initializer(mean=15., stddev=3.))
cost = R_sum_i * (beta_v + 0.5 * log_var)
beta_a = tf.get_variable('beta_a',
shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
initializer=tf.truncated_normal_initializer(mean=100.0, stddev=10))
cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
logit = lambda_val * (beta_a - cost_sum_h)
log_activation = tf.log_sigmoid(logit)
return(pose, log_var, log_activation)
示例3: log_sum_exp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def log_sum_exp(x, axis=None, keepdims=False):
"""
Deprecated: Use tf.reduce_logsumexp().
Tensorflow numerically stable log sum of exps across the `axis`.
:param x: A Tensor.
:param axis: An int or list or tuple. The dimensions to reduce.
If `None` (the default), reduces all dimensions.
:param keepdims: Bool. If true, retains reduced dimensions with length 1.
Default to be False.
:return: A Tensor after the computation of log sum exp along given axes of
x.
"""
x = tf.convert_to_tensor(x)
x_max = tf.reduce_max(x, axis=axis, keepdims=True)
ret = tf.log(tf.reduce_sum(tf.exp(x - x_max), axis=axis,
keepdims=True)) + x_max
if not keepdims:
ret = tf.reduce_sum(ret, axis=axis)
return ret
示例4: _log_prob
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def _log_prob(self, given):
logits, temperature = self.path_param(self.logits), \
self.path_param(self.temperature)
log_given = tf.log(given)
log_temperature = tf.log(temperature)
n = tf.cast(self.n_categories, self.dtype)
if self._check_numerics:
log_given = tf.check_numerics(log_given, "log(given)")
log_temperature = tf.check_numerics(
log_temperature, "log(temperature)")
temp = logits - temperature * log_given
return tf.lgamma(n) + (n - 1) * log_temperature + \
tf.reduce_sum(temp - log_given, axis=-1) - \
n * tf.reduce_logsumexp(temp, axis=-1)
示例5: multilabel_categorical_crossentropy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def multilabel_categorical_crossentropy(y_true, y_pred):
"""
y_true = [0,1],
1 stands for target class,
0 stands for none-target class
"""
y_pred = (1 - 2 * y_true) * y_pred
y_pred_neg = y_pred - y_true * 1e12
y_pred_pos = y_pred - (1 - y_true) * 1e12
zeros = tf.zeros_like(y_pred[..., :1])
y_pred_neg = tf.concat([y_pred_neg, zeros], axis=-1)
y_pred_pos = tf.concat([y_pred_pos, zeros], axis=-1)
neg_loss = tf.reduce_logsumexp(y_pred_neg, axis=-1)
pos_loss = tf.reduce_logsumexp(y_pred_pos, axis=-1)
return neg_loss + pos_loss
示例6: logsumexp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def logsumexp(x, axis=None, keepdims=False):
"""Computes log(sum(exp(elements across dimensions of a tensor))).
This function is more numerically stable than log(sum(exp(x))).
It avoids overflows caused by taking the exp of large inputs and
underflows caused by taking the log of small inputs.
# Arguments
x: A tensor or variable.
axis: axis: An integer or list of integers in [-rank(x), rank(x)),
the axes to compute the logsumexp. If `None` (default), computes
the logsumexp over all dimensions.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`, the reduced dimension is
retained with length 1.
# Returns
The reduced tensor.
"""
return tf.reduce_logsumexp(x, axis, keepdims)
示例7: dense_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def dense_loss(self, y_true, y_pred):
"""y_true需要是one hot形式
"""
# 導出mask並轉換數據類型
mask = K.all(K.greater(y_pred, -1e6), axis=2, keepdims=True)
mask = K.cast(mask, K.floatx())
# 計算目標分數
y_true, y_pred = y_true * mask, y_pred * mask
target_score = self.target_score(y_true, y_pred)
# 遞歸計算log Z
init_states = [y_pred[:, 0]]
y_pred = K.concatenate([y_pred, mask], axis=2)
input_length = K.int_shape(y_pred[:, 1:])[1]
log_norm, _, _ = K.rnn(
self.log_norm_step,
y_pred[:, 1:],
init_states,
input_length=input_length
) # 最後一步的log Z向量
log_norm = tf.reduce_logsumexp(log_norm, 1) # logsumexp得標量
# 計算損失 -log p
return log_norm - target_score
示例8: testCrfLogLikelihood
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def testCrfLogLikelihood(self):
inputs = np.array(
[[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]], dtype=np.float32)
transition_params = np.array(
[[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32)
sequence_lengths = np.array(3, dtype=np.int32)
num_words = inputs.shape[0]
num_tags = inputs.shape[1]
with self.test_session() as sess:
all_sequence_log_likelihoods = []
# Make sure all probabilities sum to 1.
for tag_indices in itertools.product(
range(num_tags), repeat=sequence_lengths):
tag_indices = list(tag_indices)
tag_indices.extend([0] * (num_words - sequence_lengths))
sequence_log_likelihood, _ = tf.contrib.crf.crf_log_likelihood(
inputs=tf.expand_dims(inputs, 0),
tag_indices=tf.expand_dims(tag_indices, 0),
sequence_lengths=tf.expand_dims(sequence_lengths, 0),
transition_params=tf.constant(transition_params))
all_sequence_log_likelihoods.append(sequence_log_likelihood)
total_log_likelihood = tf.reduce_logsumexp(all_sequence_log_likelihoods)
tf_total_log_likelihood = sess.run(total_log_likelihood)
self.assertAllClose(tf_total_log_likelihood, 0.0)
示例9: _call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def _call(self, inp, output_size, is_training):
H, W, B, _ = tuple(int(i) for i in inp.shape[1:])
# inp = tf.log(tf.nn.softmax(tf.clip_by_value(inp, -10., 10.), axis=4))
inp = inp - tf.reduce_logsumexp(inp, axis=4, keepdims=True)
running_sum = inp[:, 0, 0, 0, :]
for h in range(H):
for w in range(W):
for b in range(B):
if h == 0 and w == 0 and b == 0:
pass
else:
right = inp[:, h, w, b, :]
running_sum = addition_compact_logspace(running_sum, right)
assert running_sum.shape[1] == output_size
return running_sum
示例10: logsumexp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def logsumexp(x, axis=None, keepdims=False):
"""Computes log(sum(exp(elements across dimensions of a tensor))).
This function is more numerically stable than log(sum(exp(x))).
It avoids overflows caused by taking the exp of large inputs and
underflows caused by taking the log of small inputs.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to reduce over.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`, the reduced dimension is
retained with length 1.
# Returns
The reduced tensor.
"""
return tf.reduce_logsumexp(x, axis, keepdims)
示例11: multiclass_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def multiclass_loss(self,
p_emb: tf.Tensor,
s_emb: tf.Tensor,
o_emb: tf.Tensor,
all_emb: tf.Tensor) -> tf.Tensor:
# [B]
x_ijk = self.score(p_emb, s_emb, o_emb)
# [N,
# [B, N]
x_ij = self.score_sp(p_emb, s_emb, all_emb)
x_jk = self.score_po(p_emb, all_emb, o_emb)
# [B]
lse_x_ij = tf.reduce_logsumexp(x_ij, 1)
lse_x_jk = tf.reduce_logsumexp(x_jk, 1)
# [B]
losses = - x_ijk + lse_x_ij - x_ijk + lse_x_jk
# Scalar
loss = tf.reduce_mean(losses)
return loss
示例12: evidence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def evidence(sess,data,elbo, batch_size = 100, S = 100, total_batch = None):
'''
For correct use:
ELBO for x_i must be calculated by SINGLE z sample from q(z|x_i)
'''
#from scipy.special import logsumexp
if total_batch is None:
total_batch = int(data.num_examples / batch_size)
avg_evi = 0
for j in range(total_batch):
test_xs = data.next_batch(batch_size)
elbo_accu = np.empty([batch_size,0])
for i in range(S):
elbo_i = sess.run(elbo,{x:test_xs})
elbo_accu = np.append(elbo_accu,elbo_i,axis=1)
evi0 = sess.run(tf.reduce_logsumexp(elbo_accu,axis = 1))
evi = np.mean(evi0 - np.log(S))
avg_evi += evi / total_batch
return avg_evi
#%%
示例13: evidence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def evidence(sess,data,elbo, batch_size = 100, S = 100, total_batch = None):
'''
For correct use:
ELBO for x_i must be calculated by SINGLE z sample from q(z|x_i)
'''
#from scipy.special import logsumexp
if total_batch is None:
total_batch = int(data.num_examples / batch_size)
avg_evi = 0
for j in range(total_batch):
test_xs = data.next_batch(batch_size)
elbo_accu = np.empty([batch_size,0])
for i in range(S):
elbo_i = sess.run(elbo,{x:test_xs})
elbo_accu = np.append(elbo_accu,elbo_i,axis=1)
evi0 = sess.run(tf.reduce_logsumexp(elbo_accu,axis = 1))
evi = np.mean(evi0 - np.log(S))
avg_evi += evi / total_batch
return avg_evi
#%%
示例14: evidence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def evidence(sess,data,elbo, batch_size = 100, S = 100, total_batch = None):
'''
For correct use:
ELBO for x_i must be calculated by SINGLE z sample from q(z|x_i)
'''
#from scipy.special import logsumexp
if total_batch is None:
total_batch = int(data.num_examples / batch_size)
avg_evi = 0
for j in range(total_batch):
test_xs = data.next_batch(batch_size)
elbo_accu = np.empty([batch_size,0])
for i in range(S):
elbo_i = sess.run(elbo,{x:test_xs})
elbo_accu = np.append(elbo_accu,elbo_i,axis=1)
evi0 = sess.run(tf.reduce_logsumexp(elbo_accu,axis = 1))
evi = np.mean(evi0 - np.log(S))
avg_evi += evi / total_batch
return avg_evi
#%%
示例15: evidence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_logsumexp [as 別名]
def evidence(sess,data,elbo, batch_size = 100, S = 100, total_batch = None):
'''
For correct use:
ELBO for x_i must be calculated by SINGLE z sample from q(z|x_i)
'''
#from scipy.special import logsumexp
if total_batch is None:
total_batch = int(data.num_examples / batch_size)
avg_evi = 0
for j in range(total_batch):
test_xs = data.next_batch(batch_size)
elbo_accu = np.empty([batch_size,0])
for i in range(S):
elbo_i = sess.run(elbo,{x:test_xs})
elbo_accu = np.append(elbo_accu,elbo_i,axis=1)
evi0 = sess.run(tf.reduce_logsumexp(elbo_accu,axis = 1))
evi = np.mean(evi0 - np.log(S))
avg_evi += evi / total_batch
return avg_evi
#%%