本文整理匯總了Python中tensorflow.reduce_join方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_join方法的具體用法?Python tensorflow.reduce_join怎麽用?Python tensorflow.reduce_join使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.reduce_join方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _mapper
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def _mapper(example_proto):
features = {
'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
}
example = tf.parse_single_example(example_proto, features)
wav = example['samples'][:, 0]
wav = wav[:16384]
wav_len = tf.shape(wav)[0]
wav = tf.pad(wav, [[0, 16384 - wav_len]])
label = tf.reduce_join(example['label'], 0)
return wav, label
示例2: _joined_array
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def _joined_array(num_dims, reduce_dim):
"""Creates an ndarray with the result from reduce_join on input_array.
Args:
num_dims: The number of dimensions of the original input array.
reduce_dim: The dimension to reduce.
Returns:
An ndarray of shape [2] * (num_dims - 1).
"""
formatter = "{:0%db}" % (num_dims - 1)
result = np.zeros(shape=[2] * (num_dims - 1), dtype="S%d" % (2 * num_dims))
flat = result.ravel()
for i in xrange(2 ** (num_dims - 1)):
dims = formatter.format(i)
flat[i] = "".join([(dims[:reduce_dim] + "%d" + dims[reduce_dim:]) % j
for j in xrange(2)])
return result
示例3: _testReduceJoin
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def _testReduceJoin(self, input_array, truth, truth_shape,
reduction_indices, keep_dims=False, separator=""):
"""Compares the output of reduce_join to an expected result.
Args:
input_array: The string input to be joined.
truth: An array or np.array of the expected result.
truth_shape: An array or np.array of the expected shape.
reduction_indices: The indices to reduce over.
keep_dims: Whether or not to retain reduced dimensions.
separator: The separator to use for joining.
"""
with self.test_session():
output = tf.reduce_join(inputs=input_array,
reduction_indices=reduction_indices,
keep_dims=keep_dims,
separator=separator)
output_array = output.eval()
self.assertAllEqualUnicode(truth, output_array)
self.assertAllEqual(truth_shape, output.get_shape())
示例4: get_words_from_chars
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def get_words_from_chars(characters_list: List[str], sequence_lengths: List[int], name='chars_conversion'):
with tf.name_scope(name=name):
def join_charcaters_fn(coords):
return tf.reduce_join(characters_list[coords[0]:coords[1]])
def coords_several_sequences():
end_coords = tf.cumsum(sequence_lengths)
start_coords = tf.concat([[0], end_coords[:-1]], axis=0)
coords = tf.stack([start_coords, end_coords], axis=1)
coords = tf.cast(coords, dtype=tf.int32)
return tf.map_fn(join_charcaters_fn, coords, dtype=tf.string)
def coords_single_sequence():
return tf.reduce_join(characters_list, keep_dims=True)
words = tf.cond(tf.shape(sequence_lengths)[0] > 1,
true_fn=lambda: coords_several_sequences(),
false_fn=lambda: coords_single_sequence())
return words
示例5: get_text
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def get_text(self, ids):
"""Returns a string corresponding to a sequence of character ids.
Args:
ids: a tensor with shape [batch_size, max_sequence_length]
"""
return tf.reduce_join(
self.table.lookup(tf.to_int64(ids)), reduction_indices=1)
示例6: get_text
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def get_text(self, ids):
"""Returns a string corresponding to a sequence of character ids.
Args:
ids: a tensor with shape [batch_size, max_sequence_length]
"""
return tf.reduce_join(
self.table.lookup(tf.to_int64(ids)), reduction_indices=1)
示例7: record_to_xy
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def record_to_xy(example_proto, labels):
features = {
'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
}
example = tf.parse_single_example(example_proto, features)
wav = example['samples'][:, 0]
wav = wav[:16384]
wav = tf.pad(wav, [[0, 16384 - tf.shape(wav)[0]]])
wav.set_shape([16384])
label_chars = example['label']
# Truncate labels for TIMIT
label_lens = [len(l) for l in labels]
if len(set(label_lens)) == 1:
label_chars = label_chars[:label_lens[0]]
label = tf.reduce_join(label_chars, 0)
label_id = tf.constant(0, dtype=tf.int32)
nmatches = tf.constant(0)
for i, label_candidate in enumerate(labels):
match = tf.cast(tf.equal(label, label_candidate), tf.int32)
label_id += i * match
nmatches += match
with tf.control_dependencies([tf.assert_equal(nmatches, 1)]):
return wav, label_id
示例8: _testMultipleReduceJoin
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def _testMultipleReduceJoin(self, input_array, reduction_indices,
separator=" "):
"""Tests reduce_join for one input and multiple reduction_indices.
Does so by comparing the output to that from nested reduce_string_joins.
The correctness of single-dimension reduce_join is verified by other
tests below using _testReduceJoin.
Args:
input_array: The input to test.
reduction_indices: The indices to reduce.
separator: The separator to use when joining.
"""
num_dims = len(input_array.shape)
truth_red_indices = reduction_indices or list(reversed(xrange(num_dims)))
with self.test_session():
output = tf.reduce_join(
inputs=input_array, reduction_indices=reduction_indices,
keep_dims=False, separator=separator)
output_keep_dims = tf.reduce_join(
inputs=input_array, reduction_indices=reduction_indices,
keep_dims=True, separator=separator)
truth = input_array
for index in truth_red_indices:
truth = tf.reduce_join(
inputs=truth, reduction_indices=index, keep_dims=True,
separator=separator)
truth_squeezed = tf.squeeze(truth, squeeze_dims=truth_red_indices)
output_array = output.eval()
output_keep_dims_array = output_keep_dims.eval()
truth_array = truth.eval()
truth_squeezed_array = truth_squeezed.eval()
self.assertAllEqualUnicode(truth_array, output_keep_dims_array)
self.assertAllEqualUnicode(truth_squeezed_array, output_array)
self.assertAllEqual(truth.get_shape(), output_keep_dims.get_shape())
self.assertAllEqual(truth_squeezed.get_shape(), output.get_shape())
示例9: testUnknownShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def testUnknownShape(self):
input_array = [["a"], ["b"]]
truth = ["ab"]
truth_shape = None
with self.test_session():
placeholder = tf.placeholder(tf.string, name="placeholder")
reduced = tf.reduce_join(placeholder, reduction_indices=0)
output_array = reduced.eval(feed_dict={placeholder.name: input_array})
self.assertAllEqualUnicode(truth, output_array)
self.assertAllEqual(truth_shape, reduced.get_shape())
示例10: testUnknownIndices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def testUnknownIndices(self):
input_array = [["this", "is", "a", "test"],
["please", "do", "not", "panic"]]
truth_dim_zero = ["thisplease", "isdo", "anot", "testpanic"]
truth_dim_one = ["thisisatest", "pleasedonotpanic"]
truth_shape = None
with self.test_session():
placeholder = tf.placeholder(tf.int32, name="placeholder")
reduced = tf.reduce_join(input_array, reduction_indices=placeholder)
output_array_dim_zero = reduced.eval(feed_dict={placeholder.name: [0]})
output_array_dim_one = reduced.eval(feed_dict={placeholder.name: [1]})
self.assertAllEqualUnicode(truth_dim_zero, output_array_dim_zero)
self.assertAllEqualUnicode(truth_dim_one, output_array_dim_one)
self.assertAllEqual(truth_shape, reduced.get_shape())
示例11: testZeroDims
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def testZeroDims(self):
valid_truth_shape = [0]
with self.test_session():
inputs = np.zeros([0, 1], dtype=str)
with self.assertRaisesRegexp(ValueError, "dimension 0 with size 0"):
tf.reduce_join(inputs=inputs, reduction_indices=0)
valid = tf.reduce_join(inputs=inputs, reduction_indices=1)
valid_array_shape = valid.eval().shape
self.assertAllEqualUnicode(valid_truth_shape, valid_array_shape)
示例12: testInvalidArgsUnknownShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def testInvalidArgsUnknownShape(self):
with self.test_session():
placeholder = tf.placeholder(tf.string, name="placeholder")
index_too_high = tf.reduce_join(placeholder, reduction_indices=1)
duplicate_index = tf.reduce_join(placeholder, reduction_indices=[-1, 1])
with self.assertRaisesOpError("Invalid reduction dimension 1"):
index_too_high.eval(feed_dict={placeholder.name: [""]})
with self.assertRaisesOpError("Duplicate reduction dimension 1"):
duplicate_index.eval(feed_dict={placeholder.name: [[""]]})
示例13: testInvalidArgsUnknownIndices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def testInvalidArgsUnknownIndices(self):
with self.test_session():
placeholder = tf.placeholder(tf.int32, name="placeholder")
reduced = tf.reduce_join(["test", "test2"],
reduction_indices=placeholder)
with self.assertRaisesOpError("reduction dimension -2"):
reduced.eval(feed_dict={placeholder.name: -2})
with self.assertRaisesOpError("reduction dimension 2"):
reduced.eval(feed_dict={placeholder.name: 2})
示例14: get_text
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def get_text(self, ids):
""" Returns a string corresponding to a sequence of character ids.
Args:
ids: a tensor with shape [batch_size, max_sequence_length]
"""
return tf.reduce_join(
self.table.lookup(tf.to_int64(ids)), reduction_indices=1)
示例15: _convert_to_tokens
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_join [as 別名]
def _convert_to_tokens(self, buffer_size):
# The following 3 steps act as a python String lower() function
# Split to characters
self.text_set = self.text_set.map(lambda src, tgt:
(tf.string_split([src], delimiter='').values,
tf.string_split([tgt], delimiter='').values)
).prefetch(buffer_size)
# Convert all upper case characters to lower case characters
self.text_set = self.text_set.map(lambda src, tgt:
(self.case_table.lookup(src), self.case_table.lookup(tgt))
).prefetch(buffer_size)
# Join characters back to strings
self.text_set = self.text_set.map(lambda src, tgt:
(tf.reduce_join([src]), tf.reduce_join([tgt]))
).prefetch(buffer_size)
# Split to word tokens
self.text_set = self.text_set.map(lambda src, tgt:
(tf.string_split([src]).values, tf.string_split([tgt]).values)
).prefetch(buffer_size)
# Remove sentences longer than the model allows
self.text_set = self.text_set.map(lambda src, tgt:
(src[:self.src_max_len], tgt[:self.tgt_max_len])
).prefetch(buffer_size)
# Reverse the source sentence if applicable
if self.hparams.source_reverse:
self.text_set = self.text_set.map(lambda src, tgt:
(tf.reverse(src, axis=[0]), tgt)
).prefetch(buffer_size)
# Convert the word strings to ids. Word strings that are not in the vocab get
# the lookup table's default_value integer.
self.id_set = self.text_set.map(lambda src, tgt:
(tf.cast(self.vocab_table.lookup(src), tf.int32),
tf.cast(self.vocab_table.lookup(tgt), tf.int32))
).prefetch(buffer_size)