當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reduce_any方法代碼示例

本文整理匯總了Python中tensorflow.reduce_any方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_any方法的具體用法?Python tensorflow.reduce_any怎麽用?Python tensorflow.reduce_any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reduce_any方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_nms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def yolo_nms(outputs, anchors, masks, num_classes, iou_threshold=0.6, score_threshold=0.15):
    boxes, confs, classes = [], [], []

    for o in outputs:
        boxes.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1])))
        confs.append(tf.reshape(o[1], (tf.shape(o[0])[0], -1, tf.shape(o[1])[-1])))
        classes.append(tf.reshape(o[2], (tf.shape(o[0])[0], -1, tf.shape(o[2])[-1])))
    boxes = tf.concat(boxes, axis=1)
    confs = tf.concat(confs, axis=1)
    class_probs = tf.concat(classes, axis=1)
    box_scores = confs * class_probs
    mask = box_scores >= score_threshold
    mask = tf.reduce_any(mask, axis=-1)

    class_boxes = tf.boolean_mask(boxes, mask)
    class_boxes = tf.reshape(class_boxes, (tf.shape(boxes)[0], -1, 4))
    class_box_scores = tf.boolean_mask(box_scores, mask)
    class_box_scores = tf.reshape(class_box_scores, (tf.shape(boxes)[0], -1, num_classes))

    class_boxes, class_box_scores = tf.py_function(func=batched_nms,
                                                   inp=[class_boxes, class_box_scores, num_classes, iou_threshold],
                                                   Tout=[tf.float32, tf.float32])
    classes = tf.argmax(class_box_scores, axis=-1)

    return class_boxes, class_box_scores, classes 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:27,代碼來源:models.py

示例2: testLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def testLoss(self):
    batch_size = 2
    key_depth = 5
    val_depth = 5
    memory_size = 4
    window_size = 3
    x_depth = 5
    memory = transformer_memory.TransformerMemory(
        batch_size, key_depth, val_depth, memory_size)
    x = tf.random_uniform([batch_size, window_size, x_depth], minval=.0)
    memory_results, _, _, _ = (
        memory.pre_attention(
            tf.random_uniform([batch_size], minval=0, maxval=1, dtype=tf.int32),
            x, None, None))
    x = memory.post_attention(memory_results, x)
    with tf.control_dependencies([tf.print("x", x)]):
      is_nan = tf.reduce_any(tf.math.is_nan(x))
    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      for _ in range(100):
        is_nan_value, _ = session.run([is_nan, x])
    self.assertEqual(is_nan_value, False) 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:transformer_memory_test.py

示例3: bi_attention_mx

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def bi_attention_mx(config, is_train, p, h, p_mask=None, h_mask=None, scope=None): #[N, L, 2d]
    with tf.variable_scope(scope or "dense_logit_bi_attention"):
        PL = p.get_shape()[1]
        HL = h.get_shape()[1]
        p_aug = tf.tile(tf.expand_dims(p, 2), [1,1,config.max_seq_len_word,1])
        h_aug = tf.tile(tf.expand_dims(h, 1), [1,config.max_seq_len_word,1,1]) #[N, PL, HL, 2d]

        if p_mask is None:
            ph_mask = None
        else:
            p_mask_aug = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(p_mask, 2), [1, 1, config.max_seq_len_word, 1]), tf.bool), axis=3)
            h_mask_aug = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(h_mask, 1), [1, config.max_seq_len_word, 1, 1]), tf.bool), axis=3)
            ph_mask = p_mask_aug & h_mask_aug
        ph_mask = None

        
        h_logits = p_aug * h_aug
        
        return h_logits 
開發者ID:yyht,項目名稱:BERT,代碼行數:21,代碼來源:diin_utils.py

示例4: self_attention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def self_attention(config, is_train, p, p_mask=None, scope=None): #[N, L, 2d]
    with tf.variable_scope(scope or "self_attention"):
        PL = p.get_shape()[1]
        dim = p.get_shape()[-1]
        # HL = tf.shape(h)[1]
        p_aug_1 = tf.tile(tf.expand_dims(p, 2), [1,1,config.max_seq_len_word,1])
        p_aug_2 = tf.tile(tf.expand_dims(p, 1), [1,config.max_seq_len_word,1,1]) #[N, PL, HL, 2d]

        if p_mask is None:
            ph_mask = None
        else:
            p_mask_aug_1 = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(p_mask, 2), [1, 1, config.max_seq_len_word, 1]), tf.bool), axis=3)
            p_mask_aug_2 = tf.reduce_any(tf.cast(tf.tile(tf.expand_dims(p_mask, 1), [1, config.max_seq_len_word, 1, 1]), tf.bool), axis=3)
            self_mask = p_mask_aug_1 & p_mask_aug_2


        h_logits = get_logits([p_aug_1, p_aug_2], None, True, wd=config.wd, mask=self_mask,
                              is_train=is_train, func=config.self_att_logit_func, scope='h_logits')  # [N, PL, HL]
        self_att = softsel(p_aug_2, h_logits) 

        return self_att 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:diin_utils.py

示例5: search

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def search(self, initial_ids, initial_cache):
    """Beam search for sequences with highest scores."""
    state, state_shapes = self._create_initial_state(initial_ids, initial_cache)

    finished_state = tf.while_loop(
        cond=self._continue_search, body=self._search_step, loop_vars=[state],
        shape_invariants=[state_shapes], parallel_iterations=1, back_prop=False)
    finished_state = finished_state[0]

    alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
    alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
    finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
    finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
    finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]

    # Account for corner case where there are no finished sequences for a
    # particular batch item. In that case, return alive sequences for that batch
    # item.
    finished_seq = tf.compat.v1.where(
        tf.reduce_any(input_tensor=finished_flags, axis=1), finished_seq, alive_seq)
    finished_scores = tf.compat.v1.where(
        tf.reduce_any(input_tensor=finished_flags, axis=1), finished_scores, alive_log_probs)
    return finished_seq, finished_scores 
開發者ID:IntelAI,項目名稱:models,代碼行數:25,代碼來源:beam_search.py

示例6: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, stop_token_prediction, name=None):
		'''Stop on EOS. Otherwise, pass the last output as the next input and pass through state.'''
		with tf.name_scope('TacoTestHelper'):
			#A sequence is finished when the output probability is > 0.5
			finished = tf.cast(tf.round(stop_token_prediction), tf.bool)

			#Since we are predicting r frames at each step, two modes are 
			#then possible:
			#	Stop when the model outputs a p > 0.5 for any frame between r frames (Recommended)
			#	Stop when the model outputs a p > 0.5 for all r frames (Safer)
			#Note:
			#	With enough training steps, the model should be able to predict when to stop correctly
			#	and the use of stop_at_any = True would be recommended. If however the model didn't
			#	learn to stop correctly yet, (stops too soon) one could choose to use the safer option 
			#	to get a correct synthesis
			if hparams.stop_at_any:
				finished = tf.reduce_any(finished) #Recommended
			else:
				finished = tf.reduce_all(finished) #Safer option
			
			# Feed last output frame as next input. outputs is [N, output_dim * r]
			next_inputs = outputs[:, -self._output_dim:]
			next_state = state
			return (finished, next_inputs, next_state) 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:26,代碼來源:helpers.py

示例7: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def __call__(self,input_var,name=None,**kwargs) :
        def _init():
            v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2])
            t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC')
            mu,var = tf.nn.moments(t,axes=[0,1,2])
            std = tf.sqrt(var+self.epsilon)
            return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)]

        require_init = tf.reduce_any(tf.is_nan(self.g))
        init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b])

        with tf.control_dependencies(init_ops):
            w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2])
            return tf.nn.bias_add(
                        tf.nn.conv2d(input_var, w,data_format='NHWC',
                                    strides=self.strides, padding=self.padding),
                        self.b,data_format='NHWC',name=name) 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:19,代碼來源:ops.py

示例8: reduce_any

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def reduce_any(input_tensor, axis=None, keepdims=None,
               name=None, reduction_indices=None):
    """
    Wrapper around the tf.reduce_any to handle argument keep_dims
    """
    return reduce_function(tf.reduce_any, input_tensor, axis=axis,
                           keepdims=keepdims, name=name,
                           reduction_indices=reduction_indices) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:10,代碼來源:compat.py

示例9: filter_short_segments

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def filter_short_segments(self, sample):
        """ Filter out too short segment. """
        return tf.reduce_any([
            tf.shape(sample[f'{instrument}_spectrogram'])[0] >= self._T
            for instrument in self._instruments]) 
開發者ID:deezer,項目名稱:spleeter,代碼行數:7,代碼來源:dataset.py

示例10: _BuildSequence

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def _BuildSequence(self,
                     batch_size,
                     max_steps,
                     features,
                     state,
                     use_average=False):
    """Adds a sequence of beam parsing steps."""
    def Advance(state, step, scores_array, alive, alive_steps, *features):
      scores = self._BuildNetwork(features,
                                  return_average=use_average)['logits']
      scores_array = scores_array.write(step, scores)
      features, state, alive = (
          gen_parser_ops.beam_parser(state, scores, self._feature_size))
      return [state, step + 1, scores_array, alive, alive_steps + tf.cast(
          alive, tf.int32)] + list(features)

    # args: (state, step, scores_array, alive, alive_steps, *features)
    def KeepGoing(*args):
      return tf.logical_and(args[1] < max_steps, tf.reduce_any(args[3]))

    step = tf.constant(0, tf.int32, [])
    scores_array = tensor_array_ops.TensorArray(dtype=tf.float32,
                                                size=0,
                                                dynamic_size=True)
    alive = tf.constant(True, tf.bool, [batch_size])
    alive_steps = tf.constant(0, tf.int32, [batch_size])
    t = tf.while_loop(
        KeepGoing,
        Advance,
        [state, step, scores_array, alive, alive_steps] + list(features),
        shape_invariants=[tf.TensorShape(None)] * (len(features) + 5),
        parallel_iterations=100)

    # Link to the final nodes/values of ops that have passed through While:
    return {'state': t[0],
            'concat_scores': t[2].concat(),
            'alive': t[3],
            'alive_steps': t[4]} 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:40,代碼來源:structured_graph_builder.py

示例11: prune_outside_window

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def prune_outside_window(boxlist, window, scope=None):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also clip_to_window which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
      of the window
    scope: name scope.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """
  with tf.name_scope(scope, 'PruneOutsideWindow'):
    y_min, x_min, y_max, x_max = tf.split(
        value=boxlist.get(), num_or_size_splits=4, axis=1)
    win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
    coordinate_violations = tf.concat([
        tf.less(y_min, win_y_min), tf.less(x_min, win_x_min),
        tf.greater(y_max, win_y_max), tf.greater(x_max, win_x_max)
    ], 1)
    valid_indices = tf.reshape(
        tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
    return gather(boxlist, valid_indices), valid_indices 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:box_list_ops.py

示例12: prune_completely_outside_window

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def prune_completely_outside_window(boxlist, window, scope=None):
  """Prunes bounding boxes that fall completely outside of the given window.

  The function clip_to_window prunes bounding boxes that fall
  completely outside the window, but also clips any bounding boxes that
  partially overflow. This function does not clip partially overflowing boxes.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
      of the window
    scope: name scope.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """
  with tf.name_scope(scope, 'PruneCompleteleyOutsideWindow'):
    y_min, x_min, y_max, x_max = tf.split(
        value=boxlist.get(), num_or_size_splits=4, axis=1)
    win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
    coordinate_violations = tf.concat([
        tf.greater_equal(y_min, win_y_max), tf.greater_equal(x_min, win_x_max),
        tf.less_equal(y_max, win_y_min), tf.less_equal(x_max, win_x_min)
    ], 1)
    valid_indices = tf.reshape(
        tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
    return gather(boxlist, valid_indices), valid_indices 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:31,代碼來源:box_list_ops.py

示例13: _define_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def _define_step(self, done, score, summary):
    """Combine operations of a phase.

    Keeps track of the mean score and when to report it.

    Args:
      done: Tensor indicating whether current score can be used.
      score: Tensor holding the current, possibly intermediate, score.
      summary: Tensor holding summary string to write if not an empty string.

    Returns:
      Tuple of summary tensor, mean score, and new global step. The mean score
      is zero for non reporting steps.
    """
    if done.shape.ndims == 0:
      done = done[None]
    if score.shape.ndims == 0:
      score = score[None]
    score_mean = streaming_mean.StreamingMean((), tf.float32)
    with tf.control_dependencies([done, score, summary]):
      done_score = tf.gather(score, tf.where(done)[:, 0])
      submit_score = tf.cond(
          tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op)
    with tf.control_dependencies([submit_score]):
      mean_score = tf.cond(self._report, score_mean.clear, float)
      steps_made = tf.shape(score)[0]
      next_step = self._step.assign_add(steps_made)
    with tf.control_dependencies([mean_score, next_step]):
      return tf.identity(summary), mean_score, next_step, steps_made 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:31,代碼來源:loop.py

示例14: transform_targets_for_output

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def transform_targets_for_output(y_true, grid_y, grid_x, anchor_idxs, classes):
    # y_true: (N, boxes, (x1, y1, x2, y2, class, best_anchor))
    N = tf.shape(y_true)[0]

    # y_true_out: (N, grid, grid, anchors, [x, y, w, h, obj, class])
    y_true_out = tf.zeros((N, grid_y, grid_x, tf.shape(anchor_idxs)[0], 6))

    anchor_idxs = tf.cast(anchor_idxs, tf.int32)

    indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True)
    updates = tf.TensorArray(tf.float32, 1, dynamic_size=True)
    idx = 0
    for i in tf.range(N):
        for j in tf.range(tf.shape(y_true)[1]):
            if tf.equal(y_true[i][j][2], 0):
                continue
            anchor_eq = tf.equal(anchor_idxs, tf.cast(y_true[i][j][5], tf.int32))

            if tf.reduce_any(anchor_eq):
                box = y_true[i][j][0:4]
                box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2.

                anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32)
                grid_size = tf.cast(tf.stack([grid_x, grid_y], axis=-1), tf.float32)
                grid_xy = tf.cast(box_xy * grid_size, tf.int32)
                # grid[y][x][anchor] = (tx, ty, bw, bh, obj, class)
                indexes = indexes.write(idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]])
                updates = updates.write(idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]])
                idx += 1

    y_ture_out = tf.tensor_scatter_nd_update(y_true_out, indexes.stack(), updates.stack())
    return y_ture_out 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:34,代碼來源:dataset.py

示例15: prune_completely_outside_window

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_any [as 別名]
def prune_completely_outside_window(boxlist, window, scope=None):
  """Prunes bounding boxes that fall completely outside of the given window.

  The function clip_to_window prunes bounding boxes that fall
  completely outside the window, but also clips any bounding boxes that
  partially overflow. This function does not clip partially overflowing boxes.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
      of the window
    scope: name scope.

  Returns:
    pruned_boxlist: a new BoxList with all bounding boxes partially or fully in
      the window.
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """
  with tf.name_scope(scope, 'PruneCompleteleyOutsideWindow'):
    y_min, x_min, y_max, x_max = tf.split(
        value=boxlist.get(), num_or_size_splits=4, axis=1)
    win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
    coordinate_violations = tf.concat([
        tf.greater_equal(y_min, win_y_max), tf.greater_equal(x_min, win_x_max),
        tf.less_equal(y_max, win_y_min), tf.less_equal(x_max, win_x_min)
    ], 1)
    valid_indices = tf.reshape(
        tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
    return gather(boxlist, valid_indices), valid_indices 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:32,代碼來源:box_list_ops.py


注:本文中的tensorflow.reduce_any方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。