當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reduce_all方法代碼示例

本文整理匯總了Python中tensorflow.reduce_all方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reduce_all方法的具體用法?Python tensorflow.reduce_all怎麽用?Python tensorflow.reduce_all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reduce_all方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: is_same_dynamic_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def is_same_dynamic_shape(x, y):
    """
    Whether `x` and `y` has the same dynamic shape.

    :param x: A Tensor.
    :param y: A Tensor.

    :return: A scalar Tensor of `bool`.
    """
    # There is a BUG of Tensorflow for not doing static shape inference
    # right in nested tf.cond()'s, so we are not comparing x and y's
    # shape directly but working with their concatenations.
    return tf.cond(
        tf.equal(tf.rank(x), tf.rank(y)),
        lambda: tf.reduce_all(tf.equal(
            tf.concat([tf.shape(x), tf.shape(y)], 0),
            tf.concat([tf.shape(y), tf.shape(x)], 0))),
        lambda: tf.convert_to_tensor(False, tf.bool)) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:20,代碼來源:utils.py

示例2: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n - 1], where n is the
    number of tensors in 'input_sequence'.

    :param input_seq: input sequence
    :param pos: position of the output tensor

    :return: True if position is in-bounds or input length is dynamic.
    """
    seq_length = input_seq.shape[0]

    if seq_length is None: return True

    seq_length = tf.cast(seq_length, pos.dtype)

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length - 1)

    # pos >= -n and pos < n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:24,代碼來源:sequence_at.py

示例3: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n - 1], where n is the
    number of tensors in 'input_sequence'.

    :param input_seq: input sequence
    :param pos: position of the output tensor

    :return: True if position is in-bounds 
    """
    seq_length = tf.shape(input_seq.to_sparse(), out_type=pos.dtype)[0]

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length - 1)

    # pos >= -n and pos < n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:sequence_erase.py

示例4: chk_pos_in_bounds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def chk_pos_in_bounds(cls, input_seq, pos):
    """ 
    Check the position is in-bounds with respect to the sequence.
    Accepted range for 'position' is in [-n, n], where n is the 
    number of tensors in 'input_sequence'. 

    :param input_seq: input sequence
    :param pos: position to insert the tensor

    :return: True if position is in-bounds.
    """
    seq_length = tf.shape(input_seq.to_sparse(), out_type=pos.dtype)[0]

    cond1 = tf.greater_equal(pos, tf.negative(seq_length))
    cond2 = tf.less_equal(pos, seq_length)

    # pos >= -n and pos <= n
    return tf.reduce_all(tf.logical_and(cond1, cond2)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:sequence_insert.py

示例5: assert_binary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def assert_binary(tensor, name=None):
  """Asserts that all the values in the tensor are zeros or ones.

  Args:
    tensor: A tensor of shape `[A1, ..., An]` containing the values we want to
      check.
    name: A name for this op. Defaults to "assert_binary".

  Returns:
    The input tensor, with dependence on the assertion operator in the graph.

  Raises:
    tf.errors.InvalidArgumentError: If any of the values in the tensor is not
    zero or one.
  """
  if not FLAGS[tfg_flags.TFG_ADD_ASSERTS_TO_GRAPH].value:
    return tensor

  with tf.compat.v1.name_scope(name, 'assert_binary', [tensor]):
    tensor = tf.convert_to_tensor(value=tensor)
    condition = tf.reduce_all(
        input_tensor=tf.logical_or(tf.equal(tensor, 0), tf.equal(tensor, 1)))

    with tf.control_dependencies([tf.Assert(condition, data=[tensor])]):
      return tf.identity(tensor) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:27,代碼來源:asserts.py

示例6: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, stop_token_prediction, name=None):
		'''Stop on EOS. Otherwise, pass the last output as the next input and pass through state.'''
		with tf.name_scope('TacoTestHelper'):
			#A sequence is finished when the output probability is > 0.5
			finished = tf.cast(tf.round(stop_token_prediction), tf.bool)

			#Since we are predicting r frames at each step, two modes are 
			#then possible:
			#	Stop when the model outputs a p > 0.5 for any frame between r frames (Recommended)
			#	Stop when the model outputs a p > 0.5 for all r frames (Safer)
			#Note:
			#	With enough training steps, the model should be able to predict when to stop correctly
			#	and the use of stop_at_any = True would be recommended. If however the model didn't
			#	learn to stop correctly yet, (stops too soon) one could choose to use the safer option 
			#	to get a correct synthesis
			if hparams.stop_at_any:
				finished = tf.reduce_any(finished) #Recommended
			else:
				finished = tf.reduce_all(finished) #Safer option
			
			# Feed last output frame as next input. outputs is [N, output_dim * r]
			next_inputs = outputs[:, -self._output_dim:]
			next_state = state
			return (finished, next_inputs, next_state) 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:26,代碼來源:helpers.py

示例7: keep_for_training

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def keep_for_training(self, features, maximum_length=None):
    if not isinstance(maximum_length, list):
      maximum_length = [maximum_length]
    # Unset maximum lengths are set to None (i.e. no constraint).
    maximum_length += [None] * (len(self.inputters) - len(maximum_length))
    constraints = []
    for i, inputter in enumerate(self.inputters):
      keep = inputter.keep_for_training(
          self._index_features(features, i), maximum_length=maximum_length[i])
      if isinstance(keep, bool):
        if not keep:
          return False
        continue
      constraints.append(keep)
    if not constraints:
      return True
    return tf.reduce_all(constraints) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:19,代碼來源:inputter.py

示例8: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, sample_ids):
        (finished, base_next_inputs, state) = super().next_inputs(
            time=time, outputs=outputs, state=state, sample_ids=sample_ids
        )

        def maybe_sample():
            """Perform scheduled sampling."""
            where_sampling = tf.cast(tf.where(sample_ids > -1), tf.int32)
            where_not_sampling = tf.cast(tf.where(sample_ids <= -1), tf.int32)
            sample_ids_sampling = tf.gather_nd(sample_ids, where_sampling)
            inputs_not_sampling = tf.gather_nd(base_next_inputs, where_not_sampling)
            sampled_next_inputs = self.embedding_fn(sample_ids_sampling)
            base_shape = tf.shape(base_next_inputs)
            return tf.scatter_nd(
                indices=where_sampling, updates=sampled_next_inputs, shape=base_shape
            ) + tf.scatter_nd(
                indices=where_not_sampling,
                updates=inputs_not_sampling,
                shape=base_shape,
            )

        all_finished = tf.reduce_all(finished)
        next_inputs = tf.cond(all_finished, lambda: base_next_inputs, maybe_sample)
        return (finished, next_inputs, state) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:26,代碼來源:sampler.py

示例9: random_crop_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def random_crop_image(img, size, offset=None):
  # adapted from code from tf.random_crop
  shape = tf.shape(img)
  #remove the assertion for now since it makes the queue filling slow for some reason
  #check = tf.Assert(
  #  tf.reduce_all(shape[:2] >= size),
  #  ["Need value.shape >= size, got ", shape, size])
  #with tf.control_dependencies([check]):
  #  img = tf.identity(img)
  limit = shape[:2] - size + 1
  dtype = tf.int32
  if offset is None:
    offset = tf.random_uniform(shape=(2,), dtype=dtype, maxval=dtype.max, seed=None) % limit
    offset = tf.stack([offset[0], offset[1], 0])
  size0 = size[0] if isinstance(size[0], int) else None
  size1 = size[1] if isinstance(size[1], int) else None
  size_im = tf.stack([size[0], size[1], img.get_shape().as_list()[2]])
  img_cropped = tf.slice(img, offset, size_im)
  out_shape_img = [size0, size1, img.get_shape()[2]]
  img_cropped.set_shape(out_shape_img)
  return img_cropped, offset 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:23,代碼來源:Util.py

示例10: zero_all_if_any_non_finite

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def zero_all_if_any_non_finite(structure):
  """Zeroes out all entries in input if any are not finite.

  Args:
    structure: A structure supported by tf.nest.

  Returns:
     A tuple (input, 0) if all entries are finite or the structure is empty, or
     a tuple (zeros, 1) if any non-finite entries were found.
  """
  flat = tf.nest.flatten(structure)
  if not flat:
    return (structure, tf.constant(0))
  flat_bools = [tf.reduce_all(tf.math.is_finite(t)) for t in flat]
  all_finite = functools.reduce(tf.logical_and, flat_bools)
  if all_finite:
    return (structure, tf.constant(0))
  else:
    return (tf.nest.map_structure(tf.zeros_like, structure), tf.constant(1)) 
開發者ID:tensorflow,項目名稱:federated,代碼行數:21,代碼來源:tensor_utils.py

示例11: categorical_accuracy_with_variable_timestep

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def categorical_accuracy_with_variable_timestep(y_true, y_pred):
    # Actually discarding is not needed if the dummy is an all-zeros array
    # (It is indeed encoded in an all-zeros array by
    # CaptionPreprocessing.preprocess_batch)
    y_true = y_true[:, :-1, :]  # Discard the last timestep/word (dummy)
    y_pred = y_pred[:, :-1, :]  # Discard the last timestep/word (dummy)

    # Flatten the timestep dimension
    shape = tf.shape(y_true)
    y_true = tf.reshape(y_true, [-1, shape[-1]])
    y_pred = tf.reshape(y_pred, [-1, shape[-1]])

    # Discard rows that are all zeros as they represent dummy or padding words.
    is_zero_y_true = tf.equal(y_true, 0)
    is_zero_row_y_true = tf.reduce_all(is_zero_y_true, axis=-1)
    y_true = tf.boolean_mask(y_true, ~is_zero_row_y_true)
    y_pred = tf.boolean_mask(y_pred, ~is_zero_row_y_true)

    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y_true, axis=1),
                                               tf.argmax(y_pred, axis=1)),
                                      dtype=tf.float32))
    return accuracy


# As Keras stores a function's name as its metric's name 
開發者ID:danieljl,項目名稱:keras-image-captioning,代碼行數:27,代碼來源:metrics.py

示例12: convert_from_color_segmentation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def convert_from_color_segmentation(color_value_dict, arr_3d, tensor_type=False):

    if tensor_type :
        arr_2d = tf.zeros(shape=[tf.shape(arr_3d)[0], tf.shape(arr_3d)[1]], dtype=tf.uint8)

        for c, i in color_value_dict.items() :
            color_array = tf.reshape(np.asarray(c, dtype=np.uint8), shape=[1, 1, -1])
            condition = tf.reduce_all(tf.equal(arr_3d, color_array), axis=-1)
            arr_2d = tf.where(condition, tf.cast(tf.fill(tf.shape(arr_2d), i), tf.uint8), arr_2d)

        return arr_2d

    else :
        arr_2d = np.zeros((np.shape(arr_3d)[0], np.shape(arr_3d)[1]), dtype=np.uint8)

        for c, i in color_value_dict.items():
            color_array = np.asarray(c, np.float32).reshape([1, 1, -1])
            m = np.all(arr_3d == color_array, axis=-1)
            arr_2d[m] = i

        return arr_2d 
開發者ID:taki0112,項目名稱:SPADE-Tensorflow,代碼行數:23,代碼來源:utils.py

示例13: next_inputs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, stop_token_prediction, name=None):
		'''Stop on EOS. Otherwise, pass the last output as the next input and pass through state.'''
		with tf.name_scope('TacoTestHelper'):
			#A sequence is finished when the output probability is > 0.5
			finished = tf.cast(tf.round(stop_token_prediction), tf.bool)

			#Since we are predicting r frames at each step, two modes are
			#then possible:
			#	Stop when the model outputs a p > 0.5 for any frame between r frames (Recommended)
			#	Stop when the model outputs a p > 0.5 for all r frames (Safer)
			#Note:
			#	With enough training steps, the model should be able to predict when to stop correctly
			#	and the use of stop_at_any = True would be recommended. If however the model didn't
			#	learn to stop correctly yet, (stops too soon) one could choose to use the safer option
			#	to get a correct synthesis
			if self.stop_at_any:
				finished = tf.reduce_any(tf.reduce_all(finished, axis=0)) #Recommended
			else:
				finished = tf.reduce_all(tf.reduce_all(finished, axis=0)) #Safer option

			# Feed last output frame as next input. outputs is [N, output_dim * r]
			next_inputs = outputs[:, -self._output_dim:]
			next_state = state
			return (finished, next_inputs, next_state) 
開發者ID:Rayhane-mamah,項目名稱:Tacotron-2,代碼行數:26,代碼來源:helpers.py

示例14: CheckZeroOneCode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def CheckZeroOneCode(x):
  return tf.reduce_all(tf.equal(x * (x - 1.0), 0)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:4,代碼來源:blocks_binarizer.py

示例15: log_quaternion_loss_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reduce_all [as 別名]
def log_quaternion_loss_batch(predictions, labels, params):
  """A helper function to compute the error between quaternions.

  Args:
    predictions: A Tensor of size [batch_size, 4].
    labels: A Tensor of size [batch_size, 4].
    params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.

  Returns:
    A Tensor of size [batch_size], denoting the error between the quaternions.
  """
  use_logging = params['use_logging']
  assertions = []
  if use_logging:
    assertions.append(
        tf.Assert(
            tf.reduce_all(
                tf.less(
                    tf.abs(tf.reduce_sum(tf.square(predictions), [1]) - 1),
                    1e-4)),
            ['The l2 norm of each prediction quaternion vector should be 1.']))
    assertions.append(
        tf.Assert(
            tf.reduce_all(
                tf.less(
                    tf.abs(tf.reduce_sum(tf.square(labels), [1]) - 1), 1e-4)),
            ['The l2 norm of each label quaternion vector should be 1.']))

  with tf.control_dependencies(assertions):
    product = tf.multiply(predictions, labels)
  internal_dot_products = tf.reduce_sum(product, [1])

  if use_logging:
    internal_dot_products = tf.Print(
        internal_dot_products,
        [internal_dot_products, tf.shape(internal_dot_products)],
        'internal_dot_products:')

  logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
  return logcost 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:42,代碼來源:losses.py


注:本文中的tensorflow.reduce_all方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。