當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.record方法代碼示例

本文整理匯總了Python中tensorflow.record方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.record方法的具體用法?Python tensorflow.record怎麽用?Python tensorflow.record使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.record方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _process_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def _process_dataset(filenames,
                     output_directory,
                     prefix,
                     num_shards):
    """Processes and saves list of audio files as TFRecords.
    Args:
    filenames: list of strings; each string is a path to an audio file
    channel_names: list of strings; each string is a channel name (vocals, bass, drums etc)
    labels: map of string to integer; id for all channel name
    output_directory: path where output files should be created
    prefix: string; prefix for each file
    num_shards: number of chucks to split the filenames into
    Returns:
    files: list of tf-record filepaths created from processing the dataset.
    """
    _check_or_create_dir(output_directory)
    chunksize = int(math.ceil(len(filenames) / num_shards))

    pool = Pool(multiprocessing.cpu_count()-1)

    def output_file(shard_idx):
        return os.path.join(output_directory, '%s-%.5d-of-%.5d' % (prefix, shard_idx, num_shards))

    # chunk data consists of chunk_filenames and output_file
    chunk_data = [(filenames[shard * chunksize: (shard + 1) * chunksize],
                   output_file(shard)) for shard in range(num_shards)]

    files = pool.map(_process_audio_files_batch, chunk_data)

    return files 
開發者ID:Veleslavia,項目名稱:vimss,代碼行數:32,代碼來源:musdb_to_tfrecord.py

示例2: _process_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def _process_dataset(filenames,
                     output_directory,
                     prefix,
                     num_shards):
    """Processes and saves list of audio files as TFRecords.
    Args:
    filenames: list of strings; each string is a path to an audio file
    channel_names: list of strings; each string is a channel name (vocals, bass, drums etc)
    labels: map of string to integer; id for all channel name
    output_directory: path where output files should be created
    prefix: string; prefix for each file
    num_shards: number of chucks to split the filenames into
    Returns:
    files: list of tf-record filepaths created from processing the dataset.
    """
    _check_or_create_dir(output_directory)
    chunksize = int(math.ceil(len(filenames) / float(num_shards)))

    pool = Pool(multiprocessing.cpu_count()-1)

    def output_file(shard_idx):
        return os.path.join(output_directory, '%s-%.5d-of-%.5d' % (prefix, shard_idx, num_shards))

    # chunk data consists of chunk_filenames and output_file
    chunk_data = [(filenames[shard * chunksize: (shard + 1) * chunksize],
                  output_file(shard)) for shard in range(num_shards)]

    files = pool.map(_process_audio_files_batch, chunk_data)

    return files 
開發者ID:Veleslavia,項目名稱:vimss,代碼行數:32,代碼來源:urmp_to_tfrecords.py

示例3: dataset_parser

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def dataset_parser(self, value):
        """Parse an audio example record from a serialized string Tensor."""
        keys_to_features = {
            'audio/file_basename':
                tf.FixedLenFeature([], tf.string, ''),
            'audio/encoded':
                tf.VarLenFeature(tf.float32),
            'audio/sample_rate':
                tf.FixedLenFeature([], tf.int64, SAMPLE_RATE),
            'audio/sample_idx':
                tf.FixedLenFeature([], tf.int64, -1),
            'audio/num_samples':
                tf.FixedLenFeature([], tf.int64, NUM_SAMPLES),
            'audio/channels':
                tf.FixedLenFeature([], tf.int64, CHANNELS),
            'audio/num_sources':
                tf.FixedLenFeature([], tf.int64, NUM_SOURCES)
        }

        parsed = tf.parse_single_example(value, keys_to_features)
        audio_data = tf.sparse_tensor_to_dense(parsed['audio/encoded'], default_value=0)
        audio_shape = tf.stack([MIX_WITH_PADDING + NUM_SOURCES*NUM_SAMPLES])
        audio_data = tf.reshape(audio_data, audio_shape)
        mix, sources = tf.reshape(audio_data[:MIX_WITH_PADDING], tf.stack([MIX_WITH_PADDING, CHANNELS])), \
                       tf.reshape(audio_data[MIX_WITH_PADDING:], tf.stack([NUM_SOURCES, NUM_SAMPLES, CHANNELS]))
        mix = tf.cast(mix, tf.bfloat16)
        sources = tf.cast(sources, tf.bfloat16)
        if self.is_training:
            features = {'mix': mix}
        else:
            features = {'mix': mix, 'filename': parsed['audio/file_basename'], 'sample_id': parsed['audio/sample_idx']}
        return features, sources 
開發者ID:Veleslavia,項目名稱:vimss,代碼行數:34,代碼來源:musdb_input.py

示例4: create_record

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def create_record(record_path,
                  data,
                  labels,
                  height,
                  width,
                  channels):
    """
    Fuction to create one tf.record using two numpy arrays.
    The array in data is expected to be flat.

    :param record_path: path to save the tf.record
    :type record_path: str
    :param data: dataset
    :type data: np.array
    :param label: labels
    :type label: np.array
    :param height: image height
    :type height: int
    :param width: image width
    :type width: int
    :param channels: image channels
    :type channels: int
    """
    assert data.shape[1] == height * width * channels
    writer = tf.python_io.TFRecordWriter(record_path)
    for i, e in enumerate(data):
        img_str = data[i].tostring()
        label_str = labels[i].tostring()
        example = tf.train.Example(features=tf.train.Features(feature={
            'height': _int64_feature(height),
            'width': _int64_feature(width),
            'channels': _int64_feature(channels),
            'image_raw': _bytes_feature(img_str),
            'labels_raw': _bytes_feature(label_str)}))

        writer.write(example.SerializeToString())
    writer.close() 
開發者ID:felipessalvatore,項目名稱:self_driving_pi_car,代碼行數:39,代碼來源:data_mani.py

示例5: filed_based_convert_examples_to_features

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def filed_based_convert_examples_to_features(
        examples, label_list, max_seq_length, tokenizer, output_file, mode=None
):
    """
    將數據轉化為TF_Record 結構,作為模型數據輸入
    :param examples:  樣本
    :param label_list:標簽list
    :param max_seq_length: 預先設定的最大序列長度
    :param tokenizer: tokenizer 對象
    :param output_file: tf.record 輸出路徑
    :param mode:
    :return:
    """
    writer = tf.python_io.TFRecordWriter(output_file)
    # 遍曆訓練數據
    for (ex_index, example) in enumerate(examples):
        if ex_index % 5000 == 0:
            tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
        # 對於每一個訓練樣本,
        feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode)

        def create_int_feature(values):
            f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
            return f

        features = collections.OrderedDict()
        features["input_ids"] = create_int_feature(feature.input_ids)
        features["input_mask"] = create_int_feature(feature.input_mask)
        features["segment_ids"] = create_int_feature(feature.segment_ids)
        features["label_ids"] = create_int_feature(feature.label_ids)
        # features["label_mask"] = create_int_feature(feature.label_mask)
        # tf.train.Example/Feature 是一種協議,方便序列化???
        tf_example = tf.train.Example(features=tf.train.Features(feature=features))
        writer.write(tf_example.SerializeToString()) 
開發者ID:WenRichard,項目名稱:KBQA-BERT,代碼行數:36,代碼來源:run_ner.py

示例6: file_based_input_fn_builder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
    name_to_features = {
        "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
        "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "label_ids": tf.FixedLenFeature([seq_length], tf.int64),
        # "label_ids":tf.VarLenFeature(tf.int64),
        # "label_mask": tf.FixedLenFeature([seq_length], tf.int64),
    }

    def _decode_record(record, name_to_features):
        example = tf.parse_single_example(record, name_to_features)
        for name in list(example.keys()):
            t = example[name]
            if t.dtype == tf.int64:
                t = tf.to_int32(t)
            example[name] = t
        return example

    def input_fn(params):
        batch_size = params["batch_size"]
        d = tf.data.TFRecordDataset(input_file)
        if is_training:
            d = d.repeat()
            d = d.shuffle(buffer_size=100)
        d = d.apply(tf.contrib.data.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            drop_remainder=drop_remainder
        ))
        return d

    return input_fn 
開發者ID:WenRichard,項目名稱:KBQA-BERT,代碼行數:35,代碼來源:run_ner.py

示例7: validate_spectra_array_contents

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def validate_spectra_array_contents(record_path_name, hparams,
                                    spectra_array_path_name):
  """Checks that np.array containing spectra matches contents of record.

  Args:
    record_path_name: pathname to tf.Record file matching np.array
    hparams: See get_dataset_from_record
    spectra_array_path_name : pathname to spectra np.array.
  Raises:
    ValueError: if values in np.array stored at spectra_array_path_name
       does not match the spectra values in the TFRecord stored in the
       record_path_name.
  """
  dataset = get_dataset_from_record(
      [record_path_name],
      hparams,
      mode=tf.estimator.ModeKeys.EVAL,
      all_data_in_one_batch=True)

  feature_names = [fmap_constants.DENSE_MASS_SPEC]
  label_names = [fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY]

  features, labels = make_features_and_labels(
      dataset, feature_names, label_names, mode=tf.estimator.ModeKeys.EVAL)

  with tf.Session() as sess:
    feature_values, label_values = sess.run([features, labels])

  spectra_array = load_training_spectra_array(spectra_array_path_name)

  for i in range(np.shape(spectra_array)[0]):
    test_idx = label_values[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY][i]
    spectra_from_dataset = feature_values[fmap_constants.DENSE_MASS_SPEC][
        test_idx, :]
    spectra_from_array = spectra_array[test_idx, :]

    if not all(spectra_from_dataset.flatten() == spectra_from_array.flatten()):
      raise ValueError('np.array of spectra stored at {} does not match spectra'
                       ' values in tf.Record {}'.format(spectra_array_path_name,
                                                        record_path_name))
  return 
開發者ID:brain-research,項目名稱:deep-molecular-massspec,代碼行數:43,代碼來源:parse_sdf_utils.py

示例8: dataset_parser

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def dataset_parser(self, value):
        """Parse an audio example record from a serialized string Tensor."""
        keys_to_features = {
            'audio/file_basename':
                tf.FixedLenFeature([], tf.int64, -1),
            'audio/encoded':
                tf.VarLenFeature(tf.float32),
            'audio/sample_rate':
                tf.FixedLenFeature([], tf.int64, SAMPLE_RATE),
            'audio/sample_idx':
                tf.FixedLenFeature([], tf.int64, -1),
            'audio/num_samples':
                tf.FixedLenFeature([], tf.int64, NUM_SAMPLES),
            'audio/channels':
                tf.FixedLenFeature([], tf.int64, CHANNELS),
            'audio/labels':
                tf.VarLenFeature(tf.int64),
            'audio/num_sources':
                tf.FixedLenFeature([], tf.int64, NUM_SOURCES),
            'audio/source_names':
                tf.FixedLenFeature([], tf.string, ''),
        }

        parsed = tf.parse_single_example(value, keys_to_features)
        audio_data = tf.sparse_tensor_to_dense(parsed['audio/encoded'], default_value=0)
        audio_shape = tf.stack([MIX_WITH_PADDING + NUM_SOURCES*NUM_SAMPLES])
        audio_data = tf.reshape(audio_data, audio_shape)
        mix, sources = tf.reshape(audio_data[:MIX_WITH_PADDING], tf.stack([MIX_WITH_PADDING, CHANNELS])),tf.reshape(audio_data[MIX_WITH_PADDING:], tf.stack([NUM_SOURCES, NUM_SAMPLES, CHANNELS]))
        labels = tf.sparse_tensor_to_dense(parsed['audio/labels'])
        labels = tf.reshape(labels, tf.stack([NUM_SOURCES]))

        if self.use_bfloat16:
            mix = tf.cast(mix, tf.bfloat16)
            labels = tf.cast(labels, tf.bfloat16)
            sources = tf.cast(sources, tf.bfloat16)
        if self.mode == 'train':
            features = {'mix': mix,
                        'labels': labels}
        elif self.mode == 'eval':
            features = {'mix': mix,
                        'labels': labels}
        else:
            features = {'mix': mix, 'filename': parsed['audio/file_basename'],
                        'sample_id': parsed['audio/sample_idx'], 'labels': labels}
        return features, sources 
開發者ID:Veleslavia,項目名稱:vimss,代碼行數:47,代碼來源:urmp_input.py

示例9: write_dicts_to_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import record [as 別名]
def write_dicts_to_example(mol_list,
                           record_path_name,
                           max_atoms,
                           max_mass_spec_peak_loc,
                           true_library_array_path_name=None):
  """Helper function for writing tf.record from all examples.

  Uses dict_to_tfexample to write the actual tf.example

  Args:
    mol_list : list of rdkit.Mol objects
    record_path_name : file name for storing tf record
    max_atoms : max. number of atoms to consider in a molecule.
    max_mass_spec_peak_loc : largest mass/charge ratio to allow in a spectra
    true_library_array_path_name: path for storing np.array of true spectra

  Returns:
    - Writes tf.Record of an example for each eligible molecule
    (i.e. # atoms < max_atoms)
    - Writes np.array (len(mol_list), max_mass_spec_peak_loc) to
      true_library_array_path_name if it is defined.
  """
  options = tf.python_io.TFRecordOptions(
      tf.python_io.TFRecordCompressionType.ZLIB)

  # Wrapper function to add index value to dictionary
  if true_library_array_path_name:
    spectra_matrix = np.zeros((len(mol_list), max_mass_spec_peak_loc))

    def make_mol_dict_with_saved_array(idx, mol):
      mol_dict = make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
      mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY] = idx
      spectra_matrix[idx, :] = mol_dict[fmap_constants.DENSE_MASS_SPEC]
      return mol_dict

    make_mol_dict_fn = make_mol_dict_with_saved_array

  else:

    def make_mol_dict_without_saved_array(idx, mol):
      del idx
      return make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)

    make_mol_dict_fn = make_mol_dict_without_saved_array

  with tf.python_io.TFRecordWriter(record_path_name, options) as writer:
    for idx, mol in enumerate(mol_list):
      mol_dict = make_mol_dict_fn(idx, mol)
      example = dict_to_tfexample(mol_dict)
      writer.write(example.SerializeToString())

  if true_library_array_path_name:
    with tf.gfile.Open(true_library_array_path_name, 'w') as f:
      np.save(f, spectra_matrix) 
開發者ID:brain-research,項目名稱:deep-molecular-massspec,代碼行數:56,代碼來源:parse_sdf_utils.py


注:本文中的tensorflow.record方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。