當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.reciprocal方法代碼示例

本文整理匯總了Python中tensorflow.reciprocal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.reciprocal方法的具體用法?Python tensorflow.reciprocal怎麽用?Python tensorflow.reciprocal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reciprocal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_filter

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def _get_filter(self, data, grid, scope=None):
        """ Generate an attention filter """
        with tf.variable_scope(scope, 'filter', [data]):
            x_offset, y_offset, log_stride, log_scale, log_gamma = tf.split(
                layers.linear(data, 5, scope='parameters'), 5, axis=1)

            center = self._get_center(grid, (x_offset, y_offset), tf.exp(log_stride))

            scale = tf.expand_dims(tf.maximum(tf.exp(log_scale), self.epsilon), -1)
            filter_x = 1 + tf.square((self.data_x - center[0]) / tf.maximum(scale, self.epsilon))
            filter_y = 1 + tf.square((self.data_y - center[1]) / tf.maximum(scale, self.epsilon))

            filter_x = tf.reciprocal(tf.maximum(pi * scale * filter_x, self.epsilon))
            filter_y = tf.reciprocal(tf.maximum(pi * scale * filter_y, self.epsilon))

            return filter_x, filter_y, tf.exp(log_gamma) 
開發者ID:dojoteef,項目名稱:glas,代碼行數:18,代碼來源:attention.py

示例2: layer_normalize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def layer_normalize(tensor):
	'''Apologies if I've abused this term'''

	in_shape = tf.shape(tensor)
	axes = list(range(1, len(tensor.shape)))

	# Keep batch axis
	t = tf.reduce_sum(tensor, axis=axes )
	t += EPSILON
	t = tf.reciprocal(t)
	t = tf.check_numerics(t, "1/sum")

	tensor = tf.einsum('brc,b->brc', tensor, t)

	tensor = dynamic_assert_shape(tensor, in_shape, "layer_normalize_tensor")
	return tensor 
開發者ID:Octavian-ai,項目名稱:shortest-path,代碼行數:18,代碼來源:messaging_cell_helpers.py

示例3: planeDepthsModule

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def planeDepthsModule(plane_parameters, width, height):
    focalLength = 517.97
    urange = (tf.range(width, dtype=tf.float32) / (width + 1) - 0.5) / focalLength * 641
    urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1])
    vrange = (tf.range(height, dtype=tf.float32) / (height + 1) - 0.5) / focalLength * 481
    vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width])
            
    ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2)
    ranges = tf.reshape(ranges, [-1, 3])
            
    planesD = tf.norm(plane_parameters, axis=1, keep_dims=True)
    planesD = tf.clip_by_value(planesD, 1e-5, 10)
    planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3]))

    normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True)
    normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000))
    normalXYZ = tf.reciprocal(normalXYZ)
    plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1])
    plane_depths = tf.reshape(plane_depths, [height, width, -1])

    plane_depths = tf.clip_by_value(plane_depths, 0, 10)
    
    return plane_depths 
開發者ID:art-programmer,項目名稱:PlaneNet,代碼行數:25,代碼來源:modules.py

示例4: planeDepthsModule

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def planeDepthsModule(plane_parameters, width, height, info):
    urange = (tf.range(width, dtype=tf.float32) / (width + 1) * (info[16] + 1) - info[2]) / info[0]
    urange = tf.tile(tf.reshape(urange, [1, -1]), [height, 1])
    vrange = (tf.range(height, dtype=tf.float32) / (height + 1) * (info[17] + 1) - info[6]) / info[5]
    vrange = tf.tile(tf.reshape(vrange, [-1, 1]), [1, width])
            
    ranges = tf.stack([urange, np.ones([height, width]), -vrange], axis=2)
    ranges = tf.reshape(ranges, [-1, 3])
            
    planesD = tf.norm(plane_parameters, axis=1, keep_dims=True)
    planesD = tf.clip_by_value(planesD, 1e-5, 10)
    planesNormal = tf.div(tf.negative(plane_parameters), tf.tile(planesD, [1, 3]))

    normalXYZ = tf.matmul(ranges, planesNormal, transpose_b=True)
    normalXYZ = tf.multiply(tf.sign(normalXYZ), tf.clip_by_value(tf.abs(normalXYZ), 1e-4, 1000000))
    normalXYZ = tf.reciprocal(normalXYZ)
    plane_depths = tf.negative(normalXYZ) * tf.reshape(planesD, [-1])
    plane_depths = tf.reshape(plane_depths, [height, width, -1])

    plane_depths = tf.clip_by_value(plane_depths, 0, 10)
    
    return plane_depths 
開發者ID:art-programmer,項目名稱:PlaneNet,代碼行數:24,代碼來源:modules.py

示例5: sparse_conv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def sparse_conv(tensor,binary_mask = None,filters=32,kernel_size=3,strides=2,l2_scale=0.0):

    if binary_mask == None: #first layer has no binary mask
        b,h,w,c = tensor.get_shape()
        channels=tf.split(tensor,c,axis=3)
        #assume that if one channel has no information, all channels have no information
        binary_mask = tf.where(tf.equal(channels[0], 0), tf.zeros_like(channels[0]), tf.ones_like(channels[0])) #mask should only have the size of (B,H,W,1)

    features = tf.multiply(tensor,binary_mask)
    features = tf.layers.conv2d(features, filters=filters, kernel_size=kernel_size, strides=(strides, strides), trainable=True, use_bias=False, padding="same",kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=l2_scale))

    norm = tf.layers.conv2d(binary_mask, filters=filters,kernel_size=kernel_size,strides=(strides, strides),kernel_initializer=tf.ones_initializer(),trainable=False,use_bias=False,padding="same")
    norm = tf.where(tf.equal(norm,0),tf.zeros_like(norm),tf.reciprocal(norm))
    _,_,_,bias_size = norm.get_shape()

    b = tf.Variable(tf.constant(0.0, shape=[bias_size]),trainable=True)
    feature = tf.multiply(features,norm)+b
    mask = tf.layers.max_pooling2d(binary_mask,strides = strides,pool_size=kernel_size,padding="same")

    return feature,mask 
開發者ID:PeterTor,項目名稱:sparse_convolution,代碼行數:22,代碼來源:sparse.py

示例6: laplace_coord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def laplace_coord(pred, placeholders, block_id):
    vertex = tf.concat([pred, tf.zeros([1, 3])], 0)
    indices = placeholders['lape_idx'][block_id - 1][:, :8]
    weights = tf.cast(placeholders['lape_idx'][block_id - 1][:, -1], tf.float32)

    weights = tf.tile(tf.reshape(tf.reciprocal(weights), [-1, 1]), [1, 3])
    laplace = tf.reduce_sum(tf.gather(vertex, indices), 1)
    laplace = tf.subtract(pred, tf.multiply(laplace, weights))
    return laplace 
開發者ID:walsvid,項目名稱:Pixel2MeshPlusPlus,代碼行數:11,代碼來源:losses.py

示例7: write

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def write(self, data):
        """ Do a filtered write given the data """
        if not self.write_grid:
            raise ValueError('Writing is not supported')

        filter_x, filter_y, gamma = self.get_filter(data, self.write_grid, scope='write/filter')

        filter_y_transpose = tf.transpose(filter_y, [0, 2, 1])
        window = layers.linear(data, reduce_prod(self.write_grid.size))
        window = tf.reshape(window, (-1, self.write_grid.size[1], self.write_grid.size[0]))
        patch = tf.matmul(filter_y_transpose, tf.matmul(window, filter_x))

        return tf.reciprocal(tf.maximum(gamma, self.epsilon)) * layers.flatten(patch) 
開發者ID:dojoteef,項目名稱:glas,代碼行數:15,代碼來源:attention.py

示例8: calc_normalized_adjacency

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def calc_normalized_adjacency(context, node_state):
	# Aggregate via adjacency matrix with normalisation (that does not include self-edges)
	adj = tf.cast(context.features["kb_adjacency"], tf.float32)
	degree = tf.reduce_sum(adj, -1, keepdims=True)
	inv_degree = tf.reciprocal(degree)
	node_mask = tf.expand_dims(tf.sequence_mask(context.features["kb_nodes_len"], context.args["kb_node_max_len"]), -1)
	inv_degree = tf.where(node_mask, inv_degree, tf.zeros(tf.shape(inv_degree)))
	inv_degree = tf.where(tf.greater(degree, 0), inv_degree, tf.zeros(tf.shape(inv_degree)))
	inv_degree = tf.check_numerics(inv_degree, "inv_degree")
	adj_norm = inv_degree * adj
	adj_norm = tf.cast(adj_norm, node_state.dtype)
	adj_norm = tf.check_numerics(adj_norm, "adj_norm")
	node_incoming = tf.einsum('bnw,bnm->bmw', node_state, adj_norm)

	return node_incoming 
開發者ID:Octavian-ai,項目名稱:shortest-path,代碼行數:17,代碼來源:messaging_cell.py

示例9: _compute_tower_grads

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def _compute_tower_grads(self, tower_loss, tower_params, use_fp16=False,
                           loss_scale=None, colocate_gradients_with_ops=True):
    """docstring."""
    if use_fp16:
      assert loss_scale
      scaled_loss = tf.multiply(
          tower_loss,
          tf.convert_to_tensor(loss_scale, dtype=tower_loss.dtype),
          name="scaling_loss")
    else:
      scaled_loss = tower_loss

    grads = tf.gradients(
        scaled_loss, tower_params,
        colocate_gradients_with_ops=colocate_gradients_with_ops)
    assert grads
    for g in grads:
      assert g.dtype == tf.float32, "grad.dtype isn't fp32: %s" % g.name
    # Downscale grads
    for var, grad in zip(tower_params, grads):
      if grad is None:
        misc_utils.print_out("%s gradient is None!" % var.name)

    if use_fp16:
      grads = [
          grad * tf.reciprocal(loss_scale) for grad in grads
      ]
    return tower_params, grads 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:30,代碼來源:estimator.py

示例10: lossfunction

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def lossfunction(self, tweightmat, tindicator, tembeddings):

		with tf.variable_scope('loss_computation') as scope:
			# tembeddings: #pts x 64
			sqrvals = tf.reduce_sum(tf.square(tembeddings), 1, keep_dims=True)
			# sqrvals: #pts x 1
			sqrvalsmat = tf.tile(sqrvals, [1, tf.shape(sqrvals)[0]])
			sqrvalsmat2 = tf.add(sqrvalsmat,tf.transpose(sqrvalsmat))
			distmat =  tf.add(sqrvalsmat2, tf.scalar_mul(-2.0, tf.matmul(tembeddings,  tf.transpose(tembeddings))))/64.0

			sigmamat = tf.scalar_mul(2.0, tf.reciprocal(1.0+tf.exp(distmat)))
			posnegmapping = tf.log(tf.add(tf.scalar_mul(0.5, 1.0-tindicator), tf.multiply(tindicator, sigmamat)))
			wcrossentropy = tf.multiply(tf.negative(tindicator+2.0), posnegmapping)
			lossval = tf.reduce_mean(wcrossentropy)
		return lossval 
開發者ID:iyah4888,項目名稱:SIGGRAPH18SSS,代碼行數:17,代碼來源:hc_deeplab.py

示例11: power

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def power(x, p):
  if p == 1:
    return x
  if p == -1:
    return tf.reciprocal(x)
  return tf.pow(x, p) 
開發者ID:vladfi1,項目名稱:phillip,代碼行數:8,代碼來源:tf_lib.py

示例12: _apply_dropout_mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def _apply_dropout_mask(tensor_shape, keep_prob=1.0, normalize=True):
    random_tensor = keep_prob + tf.random_uniform(tensor_shape, dtype=tf.float32)
    binary_mask = tf.floor(random_tensor)
    if normalize:
        binary_mask = tf.reciprocal(keep_prob) * binary_mask
    return binary_mask 
開發者ID:tokestermw,項目名稱:text-gan-tensorflow,代碼行數:8,代碼來源:layers.py

示例13: get_mixture_coef

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def get_mixture_coef( self, args, output ):
      # returns the tf slices containing mdn dist params
      # ie, eq 18 -> 23 of http://arxiv.org/abs/1308.0850
      z = output    

      #get the remaining parameters
      last = args.nroutputvars_raw - args.nrClassOutputVars
      
      z_eos = z[ :, 0 ]
      z_eos = tf.sigmoid( z_eos ) #eos: sigmoid, eq 18

      z_eod = z[ :, 1 ]
      z_eod = tf.sigmoid( z_eod ) #eod: sigmoid

      z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr = tf.split( z[ :, 2:last ], 6, 1 ) #eq 20: mu1, mu2: no transformation required

      # process output z's into MDN parameters

      # softmax all the pi's:
      max_pi = tf.reduce_max( z_pi, 1, keep_dims = True )
      z_pi = tf.subtract( z_pi, max_pi ) #EdJ: subtract max pi for numerical stabilization

      z_pi = tf.exp( z_pi ) #eq 19
      normalize_pi = tf.reciprocal( tf.reduce_sum( z_pi, 1, keep_dims = True ) )
      z_pi = tf.multiply( normalize_pi, z_pi ) #19

      # exponentiate the sigmas and also make corr between -1 and 1.
      z_sigma1 = tf.exp( z_sigma1 ) #eq 21
      z_sigma2 = tf.exp( z_sigma2 )
      z_corr_tanh = tf.tanh( z_corr ) #eq 22
      z_corr_tanh = .95 * z_corr_tanh #avoid -1 and 1 

      z_corr_tanh_adj = z_corr_tanh 

      return [ z_pi, z_mu1, z_mu2, z_sigma1, z_sigma2, z_corr_tanh_adj, z_eos, z_eod ] 
開發者ID:edwin-de-jong,項目名稱:incremental-sequence-learning,代碼行數:37,代碼來源:model.py

示例14: test_basic

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def test_basic(self):
    with tf.Graph().as_default(), self.test_session() as sess:
      rnd = np.random.RandomState(0)
      x = self.get_random_tensor([18, 12], rnd=rnd)
      y = tf.reciprocal(x)
      self.assert_bw_fw(sess, x, y, rnd=rnd) 
開發者ID:renmengye,項目名稱:tensorflow-forward-ad,代碼行數:8,代碼來源:fwgrad_tests.py

示例15: inv

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import reciprocal [as 別名]
def inv(self):
        di = tf.reciprocal(self.d)
        d_col = tf.expand_dims(self.d, 1)
        DiW = self.W / d_col
        M = tf.eye(tf.shape(self.W)[1], float_type) + tf.matmul(tf.transpose(DiW), self.W)
        L = tf.cholesky(M)
        v = tf.transpose(tf.matrix_triangular_solve(L, tf.transpose(DiW), lower=True))
        return LowRankMatNeg(di, V) 
開發者ID:jameshensman,項目名稱:VFF,代碼行數:10,代碼來源:matrix_structures.py


注:本文中的tensorflow.reciprocal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。